Riccati-Coupled Similarity Shock Wave Solutions for Multispeed Discrete Boltzmann Models

H. Cornille ${ }^{1}$ and T. Platkowski ${ }^{2}$

Received June 5, 1992; final November 18, 1992

Abstract

We study nonstandard shock wave similarity solutions for three multispeed discrete Boltzmann models: (1) the square $8 v_{i}$ model with speeds 1 and $\sqrt{2}$ with the x axis along one median, (2) the Cabannes cubic $14 v_{i}$ model with speeds 1 and $\sqrt{3}$ and the x axis perpendicular to one face, and (3) another $14 v_{i}$ model with speeds 1 and $\sqrt{2}$. These models have five independent densities and two nonlinear Riccati-coupled equations. The standard similarity shock waves, solutions of scalar Riccati equations, are monotonic and the same behavior holds for the conseryative macroscopic quantities. First, we determine exact similarity shock-wave solutions of coupled Riceati equations and we observe nonmonotonic behavior for one density and a smaller effect for one conservative macroscopic quantity when we allow a violation of the microreversibility. Second, we obtain new results on the Whitham weak shock wave propagation. Third, we solve numerically the corresponding dynamical system, with microreversibility satisfied or not, and we also observe the analogous nonmonotonic behavior.

KEY WORDS: Discrete Boltzmann models; Riccati equations; similarity shock wave solutions.

1. INTRODUCTION

For the densities N_{i} associated to the velocities v_{i} of the discrete Boltzmann models (DBMs ${ }^{(1,2)}$) the standard similarity shock waves (which we call Riccatian solutions)

$$
\begin{equation*}
N_{i}=n_{0 i}+n_{i} / D, \quad D=1+w, \quad w=\delta e^{\nu \eta}, \quad \eta=x-\zeta t \tag{1.1}
\end{equation*}
$$

[^0]($n_{0 i}, n_{i}, \delta, \gamma, \zeta$ being constants) are solutions of scalar Riccati equations, for instance, $N_{1, \eta}=a N_{1}^{2}+b N_{1}+c$. These densities are monotonic η-dependent functions. The same property holds for the macroscopic conservative quantities mass M, momentum J, and energy E, which are linear combinations of the densities. In that case, the nonmonotonic effects can exist only for nonconservative macroscopic quantities.

Is it possible, either for the microscopic densities or for the macroscopic conservative quantities, to observe nonmonotonic effects? Clearly we must enlarge the class (1.1).

In this study we answer this question for a family of multispeed DBMs, ${ }^{(3,4)}$ Considering for the DBMs the restriction of their system of partial differential equations (PMEs) along the x axis and subtracting their linear conservation laws, we obtain PDEs with only one, two, three, ..., independent nonlinear equations. The case of only one really nonlinear equation for a density N_{1} leads to the scalar Riccati equation, which is linearizable and, taking into account the positivity of the densities, leads to the solutions (1.1). We discuss the important case of five independent densities and two coupled-Riccati nonlinear equations:

$$
\begin{equation*}
N_{i, \eta}=\sum_{k=1}^{2}\left(N_{i} d_{i k}+c_{i k}\right) N_{k}+f_{i} N_{j}^{2}+e_{i}, \quad i=1,2, \quad j \neq i \tag{1.2a}
\end{equation*}
$$

The standard linearization corresponds to the so-called ${ }^{(5)}$ projective Riccati system ($f_{j}=0$), which is impossible for the presently studied DBM because it requires that the front shock velocity ζ be equal to the velocity of one of the particles. Note that the type of solutions (1.1) is possible for the PDE (1.2a). ${ }^{(6)}$ We propose ${ }^{(6)}$ a new ansatz,

$$
\begin{gather*}
N_{i}=n_{0 i}+\left(n_{1 i}+w n_{2 i}\right) / D \\
D=1+\delta_{1} w+\delta_{2} w^{2}, \quad w=e^{\gamma n}, \quad \eta=x-\zeta t \tag{1.2b}
\end{gather*}
$$

which we call non-Riccatian). Let us consider two classes of DBMs with nonlinear equations of the type (1.2a): (1) mixing speeds models, ${ }^{(6)}$ and (2) models recently called the class I hierarchy ${ }^{(4)}$ with the same d-dependent system of PDEs. These DBMs include ${ }^{(3,4)}$ the square $8 v_{i}$ model with the x axis along one median, the $14 v_{i}$ cubic Cabannes model with speeds 1 and $\sqrt{3}$, and another $14 v_{i}$ model with speeds 1 and $\sqrt{2}$, which can be considered as a superposition of two $8 v_{i}$ models. Solutions of the type (1.2b) and solutions of the standard Runge-Kutta procedure with nonmonotonic behavior have been obtained for the type (1) models ${ }^{(6)}$ and the aim of this paper is to extend these results to the type (2) models.

In Section 2 and Appendix A1 we present the three physical models of
class I type. The five densities M_{1}, N_{1}, R, M_{2}, and N_{2} of this DBM are associated to the velocities whose projections along the $x=x_{1}$ axis have coordinates $1,1,0,-1$, and -1 . They satisfy the same 1D PDE with three linear conservation laws and two coupled nonlinear equations:

$$
\begin{gather*}
d=2,3, \quad d_{*}=2(d-1) \\
p_{ \pm}=\partial_{t} \pm \partial_{x}, \quad p_{+} N_{1}+p_{-} N_{2}=0, \quad p_{+} M_{1}+p_{-} M_{2}+d_{*} R_{t}=0 \\
p_{+} M_{1}-p_{-} M_{2}+2 d_{*} p_{+} N_{1}=0, \quad p_{-} N_{2} / \bar{\sigma}_{1}=a M_{2} N_{1}-M_{1} N_{2} \tag{1.3}\\
R_{t} / \bar{\sigma}_{2}=M_{1} M_{2}-R^{2}
\end{gather*}
$$

with $\bar{\sigma}_{i}$ proportional to the cross sections $\sigma_{i}, \bar{\sigma}_{2}=2 \sigma_{2} / d$, and $a>0$ a fixed number, but in general $a \neq 1$, which means that we allow a violation of the microreversibility.

In Section 3 we discuss different theoretical aspects of the class I hierarchy. First we study what we call the Rankine-Hugoniot (RH), relations which contain both the three conservation laws for density functions of a similarity variable η with propagation speed ζ

$$
\begin{equation*}
N_{i}(\eta), \quad M_{i}(\eta), \quad R(\eta), \quad \eta=x-\zeta t, \quad i=1,2 \tag{1.4}
\end{equation*}
$$

and the four relations coming from the vanishing of the two collision terms for the two equilibrium states. These two states can be determined from both a scaling parameter called n_{01} and two arbitrary parameters, ζ and $a>0$. Furthermore, three densities are linear combinations of two other, so that we can rewrite two of the nonlinear equations (1.3) as a coupledRiccati differential system for the two remaining densities, chosen to be N_{2} and R. Second, for the stability of the two equilibrium states, we generalize known weak shock results. In the Whitham ${ }^{(8)}$ approach we allow $a \neq 1$, $a>0$, and $\bar{\sigma}_{i}$ in (1.3) to be arbitrary. We find the sum of a fifth-, fourth-, and third-order differential operator. We show that the wave motions associated to the higher-order operators are exponentially damped at large time by the main waves (characteristic velocities) provided by the lowerorder operator. Third, we study the Lax admissibility (established for conservation laws alone) criteria, ${ }^{(7,1)}$ which allow the determination of the sound speeds associated to the upstream and downstream states. Requiring that both shock wave and sound wave are moving in the same direction in the upstream state, we show that this property holds in both upstream and downstream states. Finally, we show, by changing the n_{01} values, that a decrease as well as an increase of the local Boltzmann entropy (satisfying an H-theorem) across the shock are possible, without changing the parameters entering into the shock inequalities.

In Section 4 we determine non-Riccatian solutions (1.2b) which depend on one scaling parameter and two arbitrary parameters while ζ and $\bar{\sigma}_{1} / \bar{\sigma}_{2}$ are fixed. We find two classes of solutions with either N_{i} of the Riccatian type or the five densities being non-Riccatian. For the three models we give explicit examples with overshoots for one density M_{1} and small undershoots for the energy E. We observe nonmonotonic effects only if $a-1>0$ is sufficiently large. For $a \simeq 1$ we get monotonic non-Riccatian solutions.

In Section 5 we consider the general similarity solution of (1.3) in the form (1.4), and reduce the original system to a 2 D dynamical system. We find numerically the integral curve of this system, which gives the macroscopic shock profiles. The similarity solutions depend on ζ, on two parameters of the Maxwellian, and on $\bar{\sigma}_{2}$. We find the overshoot for M_{1}, not restricted to $a>1$, but also possible for $a \leqslant 1$. For the energy we observe a nonmonotonic behavior for $a>1$, which disappears when $a \rightarrow 1$.

2. CLASS I HIERARCHY OF MULTISPEED MODELS

In Appendix A1 we define the class I models by giving the coordinates $\left(x_{1}, x_{2}\right)$ for $d=2$ and $\left(x_{1}, x_{2}, x_{2}\right)$ for $d=3$ of the velocities with projections $\pm 1,0$ along the $x=x_{1}$ axis, which are associated to the five independent densities N_{i}, M_{i}, and $R, i=1,2$.

The macroscopic conservative quantities mass M, momentum J, and energy E are linear combinations of the microscopic densities

$$
\begin{align*}
M & =M_{1}+M_{2}+d_{*}\left(R+N_{1}+N_{2}\right) \\
J & =M_{1}-M_{2}+d_{*}\left(N_{1}-N_{2}\right) \tag{2.1}\\
E & =\left(M_{1}+M_{2}+d_{*}\right) / 2+d_{*} d_{* *}\left(N_{1}+N_{2}\right)
\end{align*}
$$

$d_{* *}=1$ and $d_{* *}=3 / 2$ for the Cabannes model and we deduce the velocity $U=J / M$ and the pressure $P=2 E-M U^{2}$.

With microreversibility satisfied we consider the Boltzmann- H functional for which we are able to prove an H-theorem and call Boltzmann entropy the associated $S=-H$. With microreversibility violated, we modify, as did Tartar, ${ }^{(9)}$ the Boltzmann entropy, which satisfies an H-theorem. Introducing the relative entropy $S=-H$ with

$$
\begin{gathered}
H=\sum_{i=1}^{2}\left[d_{*} N_{i} \log \left(N_{i} / \alpha_{i}\right)+M_{i} \log \left(M_{i} / \beta_{i}\right)\right]+d_{*} R \log \left(R / \beta_{0}\right) \\
\alpha_{2} \beta_{1} / \alpha_{1} \beta_{2}=a, \quad \beta_{0}^{2}=\beta_{1} \beta_{2}
\end{gathered}
$$

we find $\left[\partial_{t}+\partial_{x}(\cdots)\right] H \leqslant 0$. A simple choice is $\beta_{i}=\beta_{0}=\alpha_{2}=1, \alpha_{1}=1 / a$.

3. RH SOLUTIONS, WHITHAM AND LAX CONDITIONS, BOLTZMANN ENTROPY

3.1.Determination of the Two Equilibrium States

We assume that the densities ($N_{1}, N_{2}, M_{1}, M_{2}, R$) are functions of a similarity variable $\eta=x-\zeta t$, and define the two Maxwellian states corresponding to $|\eta|=\infty$:
(i) $\left(n_{01}, n_{02}, m_{01}, m_{02}, r_{0}\right)$,
(ii) $\left(s_{1}, s_{2}, p_{1}, p_{2}, r_{00}\right)$
with $s_{i}=n_{01}+n_{1 i}, \quad p_{i}=m_{0 i}+m_{1 i}, i=1,2, r_{00}=r_{0}+r_{1}$. The three linear conservation laws (1.3) give relations for $n_{1 i}, m_{1 i}, r_{1}$:

$$
\begin{gather*}
y:=(1-\zeta) /(1+\zeta), \quad z:=2(1-\zeta) / \zeta d_{*}, \quad n_{12}=y n_{11} \tag{3.2}\\
y m_{11}=m_{12}+2 r_{1} y / z, \quad m_{11}+2 d_{*} n_{11}+m_{12} / y=0 \tag{3.3}
\end{gather*}
$$

The two collision terms in (1.3) vanish for the two Maxwellian states:

$$
\begin{align*}
& a n_{01} m_{02}=n_{02} m_{01}, \quad m_{01} m_{02}=r_{0}^{2}, \quad a s_{1} p_{2}=s_{2} p_{1}, \quad p_{1} p_{2}=r_{00}^{2} \tag{3.4}\\
& a_{01}:=a\left(n_{01} m_{12}+m_{02} n_{11}\right)-n_{02} m_{11}-m_{01} n_{12} \\
& b_{01}:=a n_{11} m_{12}-n_{12} m_{11} \tag{3.5}\\
& a_{02}:=m_{01} m_{12}+m_{02} m_{11}-2 r_{0} r_{1} \\
& b_{02}=m_{11} m_{12}-r_{1}^{2} \tag{3.6}\\
& a_{0 i}+b_{0 i}=0, \quad i=1,2
\end{align*}
$$

For the determination of the two states (3.1) we have 11 parameters $\zeta, n_{k i}$, $m_{k i}$, and r_{k} with $k=0,1, i=1,2(a>0$ is fixed $)$, and seven independent relations. From the parameters $n_{01}>0$ and n_{11} we define scaled variables $n_{k 2}=n_{k 1} \bar{n}_{k 2}, m_{k i}=n_{k 1} \bar{m}_{k i}, r_{k}=n_{k 1} \bar{r}_{k}, k=0,1, a_{0 i}=n_{01} n_{11} \bar{a}_{0 i}, b_{0 i}=n_{11}^{2} \bar{b}_{0 i}$, and rewrite the relations

$$
\begin{gather*}
\bar{m}_{02}=\bar{n}_{02} \bar{m}_{01} / a, \quad \bar{r}_{0}=\left(\bar{m}_{01} \bar{m}_{02}\right)^{1 / 2} \tag{3.7}\\
\bar{m}_{12}=-y\left(\bar{m}_{11}+2 d_{*}\right), \quad \bar{r}_{1}=z\left(\bar{m}_{11}+d_{*}\right) \\
n_{11}=-n_{01} \bar{a}_{0 i} / \bar{b}_{0 i}, \quad i=1,2 \tag{3.8}
\end{gather*}
$$

Lemma 1. The two Maxwellian states can be determined from the knowledge of one scaling parameter n_{01}, two scaled parameters, and the propagation speed ζ :
$n_{01}>0, \quad \bar{m}_{01}>0$ arbitrary, $\quad \bar{n}_{02}>0$ arbitrary, $\quad \zeta$ arbitrary, $|\zeta|<1$

First from (3.8) we obtain \bar{m}_{02} and \bar{r}_{0} and, with n_{01}, deduce the positive parameters of the Maxwellian (i). Second, in Appendix A2, from $\bar{a}_{01} \bar{b}_{02}=\bar{a}_{02} \bar{b}_{01}$, we show that \bar{m}_{11} is the root of a cubic polynomial with coefficients determined by (3.9). Third, from the knowledge of \bar{m}_{11} and (3.8) we deduce $\bar{m}_{12}, \bar{r}_{1}$ and $\bar{a}_{0 i}, \bar{b}_{0 i}$. Fourth, from $n_{11}=-n_{01} \bar{a}_{01} / \bar{b}_{01}$ we get n_{11} and consequently $n_{1 i}, m_{1 i}, r_{1}$ or finally the Maxwellian (ii).

3.2. Coupled-Riccati Equations for Two Densities (Appendix A3)

Corollary 1. The nonlinear equations (1.3) lead to a Riccati-coupled system for N_{2} and R.

We first rewrite the two nonlinear equations (1.3) for similarity waves:

$$
\begin{equation*}
(1+\zeta) N_{2, \eta} / \bar{\sigma}_{1}=M_{1} N_{2}-a N_{1} M_{2}, \quad \zeta R_{\eta} / \bar{\sigma}_{2}=R^{2}-M_{1} M_{2} \tag{3.10}
\end{equation*}
$$

N_{1}, M_{1}, and M_{2} from the three linear conservation laws are linear combinations of N_{2} and R, and substituted into (3.10) lead to a coupled Riccati system:

$$
\begin{align*}
N_{2, \eta} & =d_{11} N_{2}^{2}+d_{12} N_{2} R+f_{1} R^{2}+c_{11} N_{2}+c_{12} R+e_{1} \\
R_{\eta} & =f_{2} N_{2}^{2}+d_{21} N_{2} R+d_{22} R^{2}+c_{21} N_{2}+c_{22} R+e_{2} \tag{3.11}
\end{align*}
$$

The coefficients and the solutions of (3.11) are functions of the arbitrary parameters (3.9) and of σ_{1} / σ_{2}. For a projective Riccati system $f_{2}=0$ or $\zeta=-1$, which is impossible.

3.3. Whitham Weak Shock Wave Propagation (Appendix A4)

For the determination of the characteristic velocities it is usual to refer to the weak-shock Lax-Whitham theory. ${ }^{(7,8)}$ In the Whitham approach we study the stability of an equilibrium state when different linear differential order terms are present. How can wave motions defined by higher-order terms be exponentially damped by the main wave provided by the lowerorder term? In the Lax approach we study the inequalities which must be satisfied by both the upstream and downstream states. We cannot apply directly the previous results ${ }^{(1)}$ because here we assume that the σ_{i} are arbitrary and we allow a violation of the microreversibility. The Whitham approach was recently considered ${ }^{(8)}$ for a $9 v_{i}$ DBM where only the contribution of the main wave given by the lowest order operator was discussed and it is not clear that the higher waves do not modify the results.

For the present models, after linearization around a Maxwellian, we
find the sum of a fifth-, fourth-, and third-order operator with associated polynomials P_{5}, P_{4}, and P_{3}. We must verify that the higher wave motions with speeds given by the $P_{4}=0, P_{5}=0$ roots are exponentially damped by the main wave motions (sound wave roots $\zeta^{(j)}$ of $P_{3}=0$). While the P_{5}, P_{3} roots are independent of σ_{i}, this is not true for the two $P_{4}=0$ roots. In Lemma A1 we prove both that the five P_{5} roots and the four P_{4} roots are interlaced with two roots ± 1 having multiplicity 2 in P_{5} and 1 in P_{4}, while the two other $\zeta^{ \pm}$roots of P_{4} are of opposite sign and modulus less than 1 and that the three $\zeta^{(j)}, j=1,2,3$, roots of P_{3} are real and belong to]-1, 1 [. In Lemma A2 we prove that the P_{4}, P_{3} roots are interlaced with the strict Whitham-like inequalities and consequently the wave motions with velocities $\zeta^{ \pm}$are exponentially damped for large time. Finally we prove (Lemma A3) that the wave motions with velocities ± 1, present in both P_{5}, P_{4}, are also exponentially damped for large time. The three weak-shock velocities $\zeta_{(i)}^{(j)}$, written in (A.7), for the (i) state can also be found (Appendix A5) from the Euler equations.

3.4. Lax Admissibility Criteria

From the above study there exist three different roots $\zeta_{(i)}^{(i)}$ associated to Maxwellian (i) and three other $\zeta_{(i i)}^{(j)}$ to Maxwellian (ii). However, we do not know whether, for instance, the (i) state is the upstream or downstream state. When the microreversibility is satisfied, Gatignol ${ }^{(1)}$ has explained the application of the $\mathrm{Lax}^{(7)}$ admissibility criteria to DBMs. Let us call $\zeta_{+\infty}^{(j)}$ the characteristic speeds associated to the states at $\pm \infty$. The Lax conditions are: for some index $j, 1 \leqslant j \leqslant 3$, the two following inequalities hold:

$$
\begin{equation*}
\zeta_{\infty}^{(j)}<\zeta<\zeta_{-\infty}^{(j)}, \quad \zeta_{-\infty}^{(j-1)}<\zeta<\zeta_{\infty}^{(j+1)} \tag{3.12}
\end{equation*}
$$

Lemma 2. If the two Lax conditions are satisfied, then the j index is $j=2$.

Since $j, j \pm 1$ is present, only $j=2$ is possible. In DBMs, Gatignol ${ }^{(1)}$ has presented a weaker condition with only the first condition satisfied and with also $j=1$ or 2 . As we shall see, the satisfaction of Lax conditions does not always guarantee the subsonic and supersonic inequalities. Let us call $\zeta_{\text {up }}$ and $\zeta_{\text {down }}$ the characteristic velocities satisfying the first Lax inequality and corresponding to the upstream and downstream states, respectively, $V=\zeta-U$, and $V_{\text {up }}$ and $V_{\text {down }}$ the associated shock velocities and $W_{\text {up }}$ and $W_{\text {down }}$ the sound wave velocities:

$$
\begin{gather*}
W_{\mathrm{up}}=V_{\mathrm{up}}-\zeta+\zeta_{\mathrm{up}}, \quad W_{\mathrm{down}}=V_{\mathrm{down}}-\zeta+\zeta_{\text {down }} \\
V_{\mathrm{up}} M_{\mathrm{up}}=V_{\text {down }} M_{\text {down }} \tag{3.13}
\end{gather*}
$$

We assume that the shock is physical if both the shock inequalities $\left|W_{\text {down }}\right|>\left|V_{\text {down }}\right|$ and $\left|W_{\text {up }}\right|<\left|V_{\text {up }}\right|$ are satisfied and only if at the upstream state (and at the downstream one) the shock wave and the sound wave move in the same direction. This means $V_{\mathrm{up}} W_{\mathrm{up}}>0$ and $V_{\text {down }} W_{\text {down }}>0$ and, from $V_{\text {up }} V_{\text {down }}>0$, the four waves move in the same direction.

Lemma 3. If $\zeta_{\text {down }}=\zeta_{\infty}$, the shock inequalities are satisfied iff $V_{\mathrm{up}}<0$ and $W_{\text {up }}<0$.

The Lax condition $\zeta_{\text {down }}<\zeta<\zeta_{\text {up }}$ implies $W_{\text {down }}<V_{\text {down }}$ and $W_{\text {up }}>V_{\text {up }}$. If $V_{\text {up }}>0$, the supersonic inequality cannot be satisfied, so that $V_{\text {up }}<0$ and $V_{\text {down }}<0$ and the subsonic inequality $W_{\text {down }}<V_{\text {down }}<0$ is satisfied. If $W_{\mathrm{up}}<0$, the supersonic inequality is also satisfied, while if $W_{\mathrm{up}}>0$, the two waves move in opposite direction at the upstream state.

Lemma 4. If $\zeta_{\text {up }}=\zeta_{\infty}$, the shock inequalities are satisfied iff $V_{\text {up }}>0$ and $W_{\text {up }}>0$.

The Lax condition $\zeta_{\text {up }}<\zeta<\zeta_{\text {down }}$ implies $W_{\text {up }}<V_{\text {up }}$ and $W_{\text {down }}>V_{\text {down }}$. If $V_{u p}<0$, the supersonic inequality is violated, while if $W_{u p}<0$, then $V_{u p} W_{u p}<0$. We notice that the Maxwellian states depend on the scaling parameter n_{01}, while the parameters of the Lax conditions $\zeta, \zeta_{ \pm \infty}^{(j)}$ as well as $V_{\mathrm{i}}, V_{\mathrm{ii}}, W_{\mathrm{i}}$, and W_{ii} are independent of n_{01}.

3.5. Local Boltzmann Entropy

Let us call $S_{\text {up }}$ and $S_{\text {down }}$ the two upstream and downstream S values, respectively, and S_{i} and S_{ii} the S values associated to the (i) and (ii) states, respectively. We find

$$
-S_{\mathrm{i}}=\sum_{j=1}^{2}\left[d_{*} n_{0 j} \log \left(n_{0 j} / \alpha_{j}\right)+m_{0 j} \log \left(m_{0 j}\right)\right]+d_{*} r_{0} \log \left(r_{0}\right), \quad a \alpha_{1}=\alpha_{2}=1
$$

and

$$
-S_{\mathrm{ii}}=\sum_{j=1}^{2}\left[d_{*} s_{j} \log \left(s_{j} / \alpha_{j}\right)+p_{j} \log p_{j}\right]+d_{*} r_{00} \log \left(r_{00}\right)
$$

These asymptotic local entropy quantities are determined from the RH relations and n_{01} is a scaling parameter for the asymptotic densities $n_{0 i}$, $m_{0 i}, r_{0}, s_{i}, p_{i}$, and r_{00} (the scaled variables $\bar{n}_{02}, \bar{m}_{0 i}, \bar{r}_{0}, \bar{s}_{i}, \bar{p}_{i}$, and \bar{r}_{00} are independent of n_{01}), but not for S_{i} and S_{ii}. Let us define $\Delta S=S_{\text {down }}-S_{\text {up }}$, and $\Delta M=M_{\text {down }}-M_{\text {up }}=n_{01} \Delta \bar{M}$, with $\Delta \bar{M}$ a function of the scaled variables and independent of n_{01}. We find $\Delta S / n_{01}=-\left(\log n_{01}\right) \Delta \bar{M}+\bar{F}$,
with \bar{F} constructed from the scaled parameters and independent of n_{01}. When n_{01} varies, the lhs (and also the rhs) has values from $-\infty$ up to $+\infty$ with only one zero for $n_{01}=n_{01, c}$. We assume a compressive (rarefactive) shock or $\Delta \bar{M}>0(<0)$. It follows that $\Delta S<0(>0)$ for $n_{01} \gg 1$ and $\Delta S>0$ (<0) for $n_{01} \ll 1$. For rarefactive (compressive) shocks, there exists a critical value $n_{01, c}$ of the scaling parameter such that $\Delta S<0(>0)$ for $n_{01}<n_{01, c}$ and $\Delta S>0(<0)$ for $n_{01}>n_{01, c}$.

4. NON-RICCATIAN EXACT SOLUTIONS (APPENDIX B)

4.1. New Relations for the Parameters (see Appendix B1)

The densities are of the non-Riccatian type (1.2b):

$$
\begin{gathered}
N_{i}=n_{0 i}+\left(n_{1 i}+w n_{2 i}\right) / D, \quad M_{i}=m_{0 i}+\left(m_{1 i}+w m_{2 i}\right) / D \\
R=r_{0}+\left(r_{1}+w r_{2}\right) / D, \quad D=1+\delta_{1} w+\delta_{2} w^{2}, \quad w=e^{\gamma \eta}, \quad \eta=x-\zeta t
\end{gathered}
$$

When $|\eta| \rightarrow \infty$ the limits of the densities are the two states defined in (3.1). Consequently, the $n_{k i}, m_{k i}$, and $r_{k}(k=0,1 ; i=1,2)$ satisfy the relations and the properties studied in Section 3. Here we introduce both eight new parameters $\gamma, r_{2}, n_{22}, m_{2 i}$, and $\delta_{i}(i=1,2), \sigma_{2} / \sigma_{1}$ (with n_{21} as a scaling parameter) and nine new relations, or one more relation than parameters. The solutions will depend on \bar{m}_{01} and \bar{n}_{02} as arbitrary parameters, and n_{01} and n_{21} as scaling parameters, while ζ will be found from a compatibility condition.

The linear conservation laws give the relations (3.2)-(3.3) for the scaled parameters associated to n_{21} :

$$
\begin{gathered}
\bar{n}_{22}=n_{22} / n_{21}=y, \quad m_{2 i}=n_{21} \bar{m}_{2 i}, \quad r_{2}=n_{21} \bar{r}_{2} \\
\bar{m}_{22}=-y\left(\bar{m}_{21}+2 d_{*}\right), \quad \bar{r}_{2}=z\left(\bar{m}_{21}+d_{*}\right)
\end{gathered}
$$

The two nonlinear equations (3.10) give six new relations:

$$
\begin{aligned}
\gamma(1+\zeta) / \bar{\sigma}_{1} & =a_{11} / n_{22}=\left(b_{11}+a_{01} \delta_{1}\right) /\left(\delta_{1} n_{12}-2 n_{22}\right) \\
& =\left(b_{21}+\delta_{2} a_{01}\right) /\left(2 n_{12} \delta_{2}-n_{21} \delta_{1}\right) \\
\gamma \zeta / \bar{\sigma}_{2} & =a_{12} / r_{2}=\left(b_{12}+\delta_{1} a_{02}\right) /\left(\delta_{1} r_{1}-2 r_{2}\right) \\
& =\left(b_{22}+\delta_{2} a_{02}\right) /\left(2 r_{1} \delta_{2}-r_{2} \delta_{1}\right)
\end{aligned}
$$

where the $a_{1 i}$ and $b_{1 i}, i=1,2$, defined in Appendix B1, are linear in the parameters $n_{2 i}, m_{2 i}$, and r_{2}, while $b_{2 i}, i=1,2$, are quadratic in these parameters.

4.2. Solutions As Functions of $n_{01}, \bar{m}_{01}, \bar{n}_{02}$ (see Appendix B)

From the parameters $n_{k 1}, k=0,1,2$, we define scaled quantities $\delta_{k}=\bar{\delta}_{k}\left(n_{21} / n_{11}\right)^{k}, a_{1 i}=n_{01} n_{21} \bar{a}_{1 i}$, and $b_{k i}=n_{k 1} n_{21} \bar{b}_{k i}, k=1,2$. We quote the main results. First (Lemma B1) we have two solutions: $\bar{\delta}_{1}=$ and $\neq \bar{\delta}_{2}+1$ (respectively called Sol.B and Sol.A). Second (Lemma B2) and third (Lemma B3), $\bar{\delta}_{1}$ and \bar{m}_{21} are known functions of the arbitrary parameters $\bar{m}_{01}, \bar{n}_{02}$, and ζ. Finally (Lemma B4) all parameters are constructed from the arbitrary ones, and ζ is fixed by a compatibility condition and n_{21} such that $\delta_{1}=\bar{\delta}_{1}\left(n_{21} / n_{11}\right)>0$.

4.3. Properties of the Non-Riccatian Sol.B: $\overline{\delta_{1}}=\bar{\delta}_{2}+1$

We define $\bar{w}:=w n_{21} / n_{11}$, find $D=1+\bar{w} \bar{\delta}_{1}+\bar{w}^{2} \bar{\delta}_{2}=(1+\bar{w})\left(1+\bar{w} \bar{\delta}_{2}\right)$, and obtain

$$
\begin{aligned}
N_{i} & =n_{0 i}+n_{1 i} /\left(1+\bar{w} \bar{\delta}_{2}\right) \\
M_{i} & =m_{0 i}+m_{1 i}\left(1+\bar{w} \bar{m}_{2 i} / \bar{m}_{1 i}\right) / D \\
R & =r_{0}+r_{1}\left(1+\bar{w} \bar{r}_{2} / /_{1}\right) / D
\end{aligned}
$$

N_{i} are monotonic solutions of the Riccatian type, while M_{i} and R are non-Riccatian only if $\bar{m}_{21} \neq \bar{m}_{11}$. (On the contrary, for $\bar{\delta}_{1} \neq \bar{\delta}_{2}+1$, the five densities can be non-Riccatian.)

Lemma 5. For positivity we must have $\bar{w}>0$ or $n_{21} / n_{11}>0, \bar{\delta}_{2}>0$.
Lemma 6. Sufficient conditions for nonmonotonic behavior of the densities M_{i} and R are, respectively, $\delta_{M_{i}}=\bar{\delta}_{1} \bar{m}_{1 i} / \bar{m}_{2 i}<1$ and $\delta_{R}=\bar{\delta}_{1} \bar{r}_{1} / \bar{F}_{2}<1$. The signs of the derivatives $M_{i, \eta}$ and R_{η} are given by

$$
\bar{w}^{2}+\left(\bar{\delta}_{1} \bar{m}_{1 i} / \bar{m}_{2 i}-1\right)+2 \bar{w} \bar{m}_{1 i} / \bar{m}_{2 i}, \quad \bar{w}^{2}+\left(\bar{\delta}_{1} \bar{r}_{1} / \bar{r}_{2}-1\right)+2 \bar{w}_{1} / \bar{r}_{2}
$$

4.4. Numerical Calculations

Figure 1 presents for (a) the $d=2$, (b) the $d=3, d_{* *}=1$, and (c) the $d=3, d_{* *}=3 / 2$ models numerical curves for positive non-Riccatian solutions (also see Table I). We observe (except Fig. 1c) similar features: overshoots for the microscopic density M_{1}, small undershoots for the energy E, and monotonic behavior for the mass M. All the densities (except M_{1} in Figs. 1a and 1b) are monotonic. For $a \leqslant 1$ we have not found both positive densities and $\sigma_{2}>0$. For $a>1$ we have obtained positivity, but only for $a-1>0$ sufficiently large have we observed nonmonotonic effects. In order

Fig. 1. Class I models, (a) $d=2$, (b) $d=3, d_{* *} \simeq 1$, and (c) $d=3, d_{* *}=3 / 2$.
to check the existence of M_{1} overshoots, a useful criterion is provided by $\delta_{M_{1}}<1$ in Figs. 1a and 1 b , and >1 in Fig. 1c.

For M, P, V, and W the corresponding values $M_{i}, P_{i}, V_{\mathrm{i}}$, and $W_{\mathrm{i}}=V_{\mathrm{i}}-\zeta+\zeta_{\mathrm{i}}$ for state (i) and $M_{\mathrm{ii}}, P_{\mathrm{ii}}, V_{\mathrm{ii}}$, and $W_{\mathrm{i}}=V_{\mathrm{i}}-\zeta+\zeta_{\mathrm{ii}}$ for state (ii) are positive. The shocks are rarefactive with M and P decreasing across the shock. In Figs. 1a-1c we find that the Lax index is $j=2$; for Figs. 1a and 1 b the upstream state (ii) is at $+\infty$, which is confirmed by $\gamma<0$, while in Fig. 1c we find that the upstream state (i) is at $+\infty$, in agreement with

Table I

	a	\bar{m}_{01}	\vec{n}_{02}	$-\zeta$	$-\zeta_{(\mathrm{i})}$	$-\zeta_{(\mathrm{ii)}}$	σ_{1}	σ_{2}	$\delta_{M_{1}}$	γ	$n_{01, c}$
Fig. 1a	15.12	0.06	14.9	0.42	32×10^{-4}	0.75	1	2.6	0.79	-	2.1
Fig. 1b	8.72	0.45	7.7	0.25	-5×10^{-3}	0.57	$\sqrt{6 / 5}$	1.1	0.79	-	0.26
Fig. 1c	1.01	2.54	1.03	46×10^{-4}	5×10^{-3}	39×10^{-4}	1	3×10^{-6}	2.18	+	0.12

$\gamma>0$. Due to $\zeta_{\text {up }}=\zeta_{\infty}$ (Lemma 4) and $V_{i}>0$ and $W_{i}>0$, the shock inequalities are satisfied.

We have calculated $S_{\text {up }}, S_{\text {down }}$, and $\Delta S=S_{\text {up }}-S_{\text {down }}$ when n_{01} is varying (in Figs. 1a and 1b $S_{\mathrm{ii}}=S_{\mathrm{up}}$; and $S_{\mathrm{i}}=S_{\mathrm{up}}$ in Fig. 1c). We find that the Boltzmann entropy decreases (or $\Delta S<0$) for $n_{01}<n_{01, c}$ (see the $n_{01, c}$ values in Table I) and increases when $n_{01}>n_{01, c}$.

5. SOLUTION BY A DYNAMICAL SYSTEM APPROACH

In this section we solve numerically the 2D dynamical system (3.11), with the limit values corresponding to type (i) and type (ii) equilibria. The limit conditions are either $\lim \left(N_{2}, R\right)=\left(n_{02}, r_{0}\right)$ when $\eta \rightarrow \infty$ and $\left(s_{2}, r_{00}\right)$ when $\eta \rightarrow-\infty$, or the inverse, and depend on which Maxwellian is at $\mp \infty$ (Section 3.4). In the general case, the free parameters of the problem are (see Lemma 1) $n_{01}=1, \bar{m}_{01}, \bar{n}_{02}, \sigma_{2}$, and ζ.

We solve (1.3) using a Runge-Kutta fourth-order procedure, with the initial data $N_{2}=n_{02}+\varepsilon_{1}$ and $R=r_{0}+\varepsilon_{2}$, or $N_{1}=s_{2}+\varepsilon_{1}$ and $M_{1}=r_{00}+\varepsilon_{2}$,

Fig. 2. M_{1} profiles for $d=2$.
ε_{i} small, depending on the direction of the integration. We start the integration from a neighborhood of the saddle, in a direction which can be calculated by the analysis of the eigenproblem for the linearized equations, and we end up in an arbitrary close neighborhood of the second singular point (node).

In Fig. 2 a we present M_{1} for different ζ values and the isotropic Maxwellian (i): $n_{01}=\cdots=r_{0}=1, d=2$. Curves A, B, and C correspond, respectively, to $\zeta=0.98,0.99$, and 0.995 . Note that M_{1} overshoots if ζ is close to unity.

In Fig. 2 b we present the influence of σ_{2} on M_{1}. Curve C corresponds to $\sigma_{2}=1$, curve D to $\sigma_{2}=4$, and curve E to $\sigma_{2}=0.5$. The shock inequalities, and the common direction of the sound and shock waves in both equilibrium states, are satisfied, and the shocks are compressive. State (i) is at $+\infty$, and M and P increase from (i) to (ii).

We also note another family of solutions [compressive shocks, state (i) at $-\infty]$, with $d=3, \bar{m}_{01}=0.1, \bar{n}_{02}=10$, and $\zeta=-0.3$ with varying σ_{2} and a. For $a=10$ and $\sigma_{2}=10$ we observe an M_{1} overshoot and an E undershoot. For $a=10$ and $\sigma_{2}=1$ the M_{1} overshoot disappears. For a decreasing to 1 the energy undershoot also disappears.

APPENDIX A. CLASS I MODELS, RH RELATIONS, WHITHAM INEQUALITIES, AND EULER WEAK-SHOCK RELATIONS

A1. Three Models of Class I

For the $d=2, d=3, \bar{\sigma}_{1}=\sigma_{1} \sqrt{6} / 2$ and $d=3, \bar{\sigma}_{1}=\sigma_{1} \sqrt{5} / 2$ models we give the planar and spatial coordinates of the velocities associated to N_{i}, M_{i}, R :

$$
\begin{gathered}
N_{1}:(1, \pm 1), \quad N_{2}:(-1, \pm 1), \quad M_{1}:(1,0), \quad M_{2}:(-1,0) \\
R:(0, \pm 1), \quad \bar{\sigma}_{1}=\sigma_{1} \sqrt{5} / 2, \quad N_{1}:(1, \pm 1, \pm 1), \quad N_{2}:(-1, \pm 1, \pm 1) \\
M_{1}:(1,0,0), \quad M_{2}:(-1,0,0), \quad R:(0, \pm 1,0),(0,0, \pm 1)
\end{gathered}
$$

and

$$
\begin{aligned}
& N_{1}:(1, \pm 1,0),(1,0, \pm 1), \quad N_{2}:(-1, \pm 1,0),(-1,0, \pm 1) \\
& M_{1}:(1,0,0), \quad M_{2}:(-1,0,0), \quad R:(0, \pm 1,0),(0,0, \pm 1)
\end{aligned}
$$

A2. Determination of \bar{m}_{11} As a Function of the Arbitrary Parameters $\tilde{m}_{01}, \bar{n}_{02}$, and ζ

From (3.2) and (3.8)

$$
\bar{a}_{01} \bar{b}_{02}-\bar{a}_{02} \bar{b}_{01}=\sum_{k=0}^{3}\left(A_{k}-B_{k} \bar{m}_{11}^{k}\right)=0
$$

with $\bar{b}_{01}=a \bar{m}_{12}-y \bar{m}_{11}, \bar{b}_{02}=\bar{m}_{11} \bar{m}_{12}-\bar{r}_{1}^{2}, \bar{a}_{01}=a\left(\bar{m}_{12}+\bar{m}_{02}\right)-\bar{n}_{02} \bar{m}_{11}-y \bar{m}_{01}$, $\bar{a}_{02}=\bar{m}_{01} \bar{m}_{12}+\bar{m}_{02} \bar{m}_{11}-2 \bar{r}_{0} \bar{r}_{1}$. We define $A:=a y+\bar{n}_{02}, Z=y+z^{2}$, and \bar{m}_{11} is the root of a cubic polynomial. We have

$$
\begin{align*}
-\bar{a}_{01} & =\bar{m}_{11} A+y\left(2 a d_{*}+\bar{m}_{01}\right)-a \bar{m}_{02} \\
-\bar{b}_{02} & =\left(\bar{m}_{11}^{2}+2 d_{*} \bar{m}_{11}\right) Z+z^{2} d_{*}^{2} \\
-\bar{a}_{02} & =\bar{m}_{11}\left(y \bar{m}_{01}+2 \bar{r}_{0} z-\bar{m}_{02}\right)+2 d_{*}\left(y \bar{m}_{01}+\bar{r}_{0} z\right) \\
-\bar{b}_{01} & =y(1+a) \bar{m}_{11}+2 a y d_{*} \\
A_{3} & =A Z \\
A_{2} & =Z\left[\left(2 a d_{*}+\bar{m}_{01}\right) y-a \bar{m}_{02}\right]+2 d_{*} Z A \tag{A.1}\\
A_{1} & =A z^{2} d_{*}^{2}+2 d_{*} Z\left[y\left(2 a d_{*}+\bar{m}_{01}\right)-a \bar{m}_{02}\right] \\
A_{0} & =z^{2} d_{*}^{2}\left[y\left(2 a d_{*}+\bar{m}_{01}\right)-a \bar{m}_{02}\right] \\
B_{3} & =0 \\
B_{2} & =y(1+a)\left(y \bar{m}_{01}+2 \bar{r}_{0} z-\bar{m}_{02}\right) \\
B_{1} & =2 y d_{*}\left[y(1+2 a) \bar{m}_{01}+z \bar{r}_{0}(1+3 a)-a \bar{m}_{02}\right] \\
B_{0} & =4 y a d_{*}^{2}\left(y \bar{m}_{01}+\bar{r}_{0} z\right)
\end{align*}
$$

A3. Riccati-Coupled Equations for $\boldsymbol{N}_{\mathbf{2}}, \boldsymbol{R}$

We write N_{1}, M_{1}, M_{2} as linear combinations of N_{2}, R :

$$
\begin{align*}
& N_{1}=\left[(1+\zeta) N_{2}+C_{1}\right] /(1-\zeta) \\
& M_{1}=\left[\zeta(d-1) R-d_{*}(1+\zeta) N_{2}+\left(C_{2}+C_{3}\right) / 2-d_{*} C_{1}\right] /(1-\zeta) \tag{A.2}\\
& M_{2}=-d_{*} N_{2}-\left[\zeta(d-1) R+\left(C_{2}-C_{3}\right) / 2+d_{*} C_{1}\right] /(1+\zeta)
\end{align*}
$$

Substituting into (3.10), we obtain the Riccati-coupled system (3.11) for N_{2}, R. The coefficients are functions of both the parameters (3.9) and of $\bar{\sigma}_{i}$, $i=1,2$. We have

$$
\begin{align*}
d_{11} & =d_{*} \bar{\sigma}_{1}(a-1) /(1-\zeta) \\
d_{12} & =\bar{\sigma}_{1}(1+a) \zeta(d-1) /\left(1-\zeta^{2}\right) \\
f_{1} & =0 \\
d_{22} & =\bar{\sigma}_{2}\left[1+\zeta^{2}(d-1)^{2} /\left(1-\zeta^{2}\right)\right] / \zeta \\
d_{21} & =0 \\
f_{2} & =-\bar{\sigma}_{2} d_{*}^{2}(1+\zeta) / \zeta(1-\zeta) \tag{A.3}\\
c_{12} & =\bar{\sigma}_{1} a \zeta(d-1) C_{1} /(1+\zeta)\left(1-\zeta^{2}\right) \\
c_{11} & =\bar{\sigma}_{1}\left[C_{2}(1+a)+C_{3}(1-a)+2 d_{*} C_{1}(2 a-1)\right] / 2\left(1-\zeta^{2}\right) \\
e_{1} & =\bar{\sigma}_{1} a C_{1}\left(C_{2}-C_{3}+2 d_{*} C_{1}\right) / 2(1+\zeta)\left(1-\zeta^{2}\right) \\
c_{21} & =\bar{\sigma}_{2} d_{*}\left(C_{3}-2 d_{*} C_{1}\right) / \zeta(1-\zeta) \\
c_{22} & =\bar{\sigma}_{2}(d-1) C_{2} /\left(1-\zeta^{2}\right) \\
e_{2} & =\bar{\sigma}_{2}\left[C_{2}^{2}-\left(C_{3}-2 d_{*} C_{1}\right)^{2}\right] / 4 \zeta\left(1-\zeta^{2}\right) \tag{A.4}
\end{align*}
$$

We note that $d_{11}=0$ if $a=1$, and $f_{2}=0$ if $\zeta=-1$.

A4. Generalization of the Weak-Shock Whitham Inequalities to Class I

In order to determine the sound wave velocities, we linearize the nonlinear equations around one equilibrium state and we obtain the sum of three differential operators with associated polynomials $P_{5}, P_{4}, P_{3}\left(P_{3}=0\right.$ for the characteristic velocities). In order to generalize the Whitham result (interlacing of the P_{3}, P_{4} roots), we find well-defined inequalities between the P_{5}, P_{4} roots and the P_{4}, P_{3} roots. Then the main wave is provided by the P_{3} roots (weak shocks), while the disturbances provided by the higher polynomials P_{5}, P_{4} will be exponentially damped. We linearize Eqs. (1.3) around the (i) state: $N_{i}=n_{0 i}\left[1+X_{i}\left(\eta_{(i)}\right)\right], \quad M_{i}=m_{0 i}\left[1+Y_{i}\left(\eta_{(\mathrm{i})}\right)\right], \quad R=$ $r_{0}\left[1+Y_{0}\left(\eta_{(\mathrm{i})}\right)\right], \eta_{(\mathrm{i})}=x-\zeta_{(i)} t$; and we define the operators $d_{+}=n_{01} p_{+}$, $d_{-}=n_{02} p_{-}, \quad \delta_{+}=m_{01} p_{+}, \quad \delta_{-}=m_{02} p_{-}, \quad \delta_{0}=r_{0} \partial_{1}, \quad z_{1}=\bar{\sigma}_{1} m_{01} n_{02}$, $z_{2}=\bar{\sigma}_{2} m_{01} m_{02}$. We obtain $\Delta Y\left(\eta_{(i)}\right)=0, Y$ being a column vector with components $X_{1}, X_{2}, Y_{1}, Y_{2}, Y_{0}$. Defining $\bar{\Delta}=\operatorname{det}(\Delta)$, we get

$$
2 \bar{\Delta}=\left|\begin{array}{ccccc}
d_{+} & d_{-} & 0 & 0 & 0 \tag{A.5}\\
2 d_{*} d_{+} & 0 & \delta_{+} & -\delta_{-} & 0 \\
0 & 0 & \delta_{+} & \delta_{-} & d_{*} \delta_{0} \\
-z_{1} & d_{-}+z_{1} & z_{1} & -z_{1} & 0 \\
0 & 0 & -z_{2} & -z_{2} & \delta_{0}+2 z_{2}
\end{array}\right|
$$

This is the sum of fifth-order $\left(\bar{\Delta}_{5}\right)$, fourth-order $\left(\bar{\Delta}_{4}\right)$, and third-order $\left(\bar{\Delta}_{3}\right)$ differential operators such that $\bar{\Delta}_{k}\left(h\left(\eta_{(\mathrm{i})}\right)\right)=0, k=5,4,3$, for h an $\eta_{(\mathrm{i})}{ }^{-}$ dependent function. We call $P_{k}\left(\zeta_{(i)}\right)$ the associated $k=5,4,3$ polynomials. We find for the fifth-, fourth-, and third-order terms

$$
\begin{align*}
\bar{\Delta}_{5}= & d_{+} d_{-} \delta_{+} \delta_{-} \delta_{0} \\
B_{5}= & n_{01} n_{02} m_{01} m_{02} r_{0} \\
P_{5}= & B_{5}\left(1-\zeta_{(\mathrm{i})}^{2}\right)^{2} \zeta_{(\mathrm{i})} \\
\bar{\Delta}_{4}= & z_{1} \delta_{0}\left[\delta_{-} \delta_{+}\left(d_{+}+d_{-}\right)+d_{*} d_{+} d_{-}\left(\delta_{+} \delta_{-}\right)\right] \\
& +z_{2} d_{+} d_{-}\left[2 \delta_{-} \delta_{+}+d_{*} \delta_{0}\left(\delta_{+}+\delta_{-}\right) / 2\right] \\
P_{4}= & \left(1-\zeta_{(\mathrm{i})}^{2}\right) P_{2} \\
P_{2}= & z_{1} P_{21}+z_{2} P_{22}=A_{2} \zeta_{(\mathrm{i})}^{2}+A_{1} \zeta_{(\mathrm{i})}+A_{0} \\
P_{21}= & \zeta_{(\mathrm{i})} r_{0}\left[m_{01} m_{02}\left(n_{01}\left(1-\zeta_{(\mathrm{i})}\right)-n_{02}\left(1+\zeta_{(\mathrm{i})}\right)\right)\right. \\
& \left.+d_{*} n_{01} n_{02}\left(m_{01}\left(1-\zeta_{(\mathrm{i})}\right)-m_{02}\left(1+\zeta_{(\mathrm{i})}\right)\right)\right] \\
P_{22}= & n_{01} n_{02}\left[2\left(1-\zeta_{(\mathrm{i})}^{2}\right) m_{01} m_{02}\right. \\
& +0.5 d_{*} r_{0} \zeta_{i}\left(m_{01}\left(1-\zeta_{(\mathrm{i})}\right)-m_{02}\left(1+\zeta_{(\mathrm{i})}\right)\right] \tag{A.6}\\
\bar{U}_{3} / z_{1} z_{2}= & 2 d_{*} d_{+} d_{-}\left(\delta_{+}+\delta_{-}+d_{*} \delta_{0}\right) \\
& +\left(d_{+}+d_{-}\right)\left[2 \delta_{+} \delta_{-}+d_{*} \delta_{0}\left(\delta_{+}+\delta_{-}\right) / 2\right] \\
P_{3} / z_{1} z_{2}= & 2 d_{*} n_{01} n_{02}\left(1-\zeta_{(\mathrm{i})}^{2}\right)\left[m_{01}-m_{02}-\zeta_{(\mathrm{i})}\left(m_{01}+m_{02}+d_{*} r_{0}\right)\right] \\
& +\left[n_{01}\left(1-\zeta_{(\mathrm{i})}\right)-n_{02}\left(1+\zeta_{(\mathrm{i})}\right)\right] \\
& \times\left\{2 m_{01} m_{02}\left(1-\zeta_{(\mathrm{i})}^{2}\right)+d_{*} \zeta_{(\mathrm{i})} r_{0}\left[m_{01}\left(1-\zeta_{(\mathrm{i})}\right)-m_{02}\left(1+\zeta_{(\mathrm{i})}\right)\right] / 2\right\} \tag{A.7}
\end{align*}
$$

with roots $-1,1$ (multiplicity 2), and 0 for P_{5}, and $-1,1$, and the two P_{2} roots for P_{4}. We call $\zeta^{ \pm}$the $P_{2}=0$ roots; $\zeta^{(j)}, j=1,2,3$, the $P_{3}=0$ roots; $\zeta_{0}^{(j)}, j=1,2$, the P_{21} roots ($P_{2}=0, z_{2}=0$); and $\zeta_{\infty}^{ \pm}$the P_{22} roots $\left(P_{2}=0, z_{2}=\infty\right)$. The $\zeta^{(j)}$ roots are n_{01} independent and for the (i) state $n_{0 i}=m_{0 i}=r_{1}$ they are $\left(0, \pm(5 / 6)^{1 / 2}\right),\left(0, \pm(13 / 15)^{1 / 2}\right)$ for $d=2,3$.

A4.1. Whitham Conditions for the P_{3}, P_{4} Roots

Lemma A1. (i) The two roots $\zeta^{ \pm}$of P_{2} are real and belong to]-1,0[and]0,1[. (ii) The three roots $\zeta^{(j)}, j=1,2,3$, of P_{3} are real and belong to $]-1,1\left[\right.$. (iii) For $\left.P_{3}(0)>0, \zeta^{+} \in\right] \zeta_{0}^{(2)}, \zeta_{\infty}^{+}\left[\right.$, while $\left.\zeta^{-} \in\right] 0, \zeta_{\infty}^{-}[$; and for $\left.P_{3}(0)<0, \zeta^{+} \in\right] 0, \zeta_{\infty}^{+}\left[\right.$, while $\left.\zeta^{-} \in\right] \zeta_{0}^{(2)}, \zeta_{\infty}^{-}[$.

We recall that $a>0, n_{0 i}>0, m_{0 i}>0, r_{0}>0, r_{0}^{2}=m_{01} m_{02}$, $m_{01} n_{02}=a m_{02} n_{01}, z_{i}>0$.
(i) From (A.6) we get $P_{2}(\pm 1)<0, A_{0}=P_{2}(0)>0, A_{2}<0 \rightarrow-1<$ $\zeta^{-}<0<\zeta^{+}<1$.
(ii) We find $\zeta_{0}^{(1)}=0, \zeta_{0}^{(2)}=c_{-} / c_{+}, \quad c_{ \pm}:=d_{*} n_{01}\left(a n_{01} \pm n_{02}\right)+$ $m_{01}\left(n_{01} \pm n_{02}\right)$, and

$$
\begin{array}{rlrl}
\zeta_{0}^{(2)} P_{3}(\zeta=0)>0, & \zeta_{0}^{(2)} P_{3}\left(\zeta=\zeta_{0}^{(2)}\right)<0 \\
P_{3}(\pm 1) \gtrless 0, & \left|\zeta_{0}^{(2)}\right| & <1 \tag{A.8}
\end{array}
$$

The P_{3} roots $\left.\epsilon\right]-1,+1\left[\right.$ if we find $-1<x_{1}<x_{2}<1$ with $P_{3}\left(x_{1}\right)>0$, $P_{3}\left(x_{2}\right)<0$. In the two cases $P_{3}(0) \gtrless 0$ we get $\left(x_{1}, x_{2}\right)=\left(0, \zeta_{0}^{(2)}\right)$ and $\left(\zeta_{0}^{(2)}, 0\right)$.
(iii) We define $c:=\left(a n_{01}-n_{02}\right) /\left(a n_{01}+n_{02}\right), \quad|c|<1, \quad \alpha:=$ $d_{*} r_{0}\left(m_{01}+m_{02}\right) / 4 m_{01} m_{02}>0$, and write down some $P_{2 i}(\zeta), i=1,2$, properties: $P_{22}(0)>0, P_{2 i}(\pm 1)<0$, and

$$
\begin{gather*}
\zeta\left(\zeta_{0}^{(2)}-\zeta\right) P_{21}(\zeta)>0, \quad P_{22}(\zeta)\left[1-\zeta^{2}+\zeta(c-\zeta) \alpha\right]>0 \\
-1<\zeta_{\infty}^{-}<0<\zeta_{\infty}^{+}<1 \tag{A.9}
\end{gather*}
$$

We seek whether or not the $\zeta^{ \pm}$roots of P_{2} belong to the positive or negative intervals limited by the corresponding P_{21}, P_{22} roots. We consider $P_{3}(0) \gtrless 0$ and, for simplicity, present the results for $P_{3}(0)>0$ with positive and negative ζ values for $P_{2 i}(\zeta), P_{2}(\zeta)$:

$$
\begin{aligned}
P_{3}(0)>0 & \rightarrow \zeta_{0}^{(2)}>0 \\
\zeta>\sup \left(\zeta_{0}^{(2)}, \zeta_{\infty}^{+}\right) & \rightarrow P_{21}<0, P_{22}<0, P_{2}<0 \\
0<\zeta<\inf \left(\zeta_{0}^{(2)}, \zeta_{\infty}^{+}\right) & \rightarrow P_{21}>0, P_{22}>0, P_{2}>0 \\
-1<\zeta<\zeta_{\infty}^{-} & \rightarrow P_{21}<0, P_{22}<0, P_{2}<0
\end{aligned}
$$

Lemma A2. The P_{3}, P_{4} roots satisfy the Whitham inequalities

$$
\begin{equation*}
-1<\zeta^{(1)}<\zeta^{-}<\zeta^{(2)}<\zeta^{+}<\zeta^{(3)}<1 \tag{A.10}
\end{equation*}
$$

In addition to (A.8), (A.9), and Lemma A1, we add

$$
P_{3}\left(\zeta_{\infty}^{ \pm}\right) \lessgtr 0 \quad \text { for } \quad \zeta \pm \gtrless 0
$$

Due to the $P_{3}(\zeta)$ changes of signs for $\zeta=-1, \zeta^{-}, \zeta^{+}, 1$, it follows that (A.10) is satisfied.

A4.2. Application of the Whitham Method to Higher Waves

We rewrite (A.5):

$$
\begin{aligned}
2 \bar{\Delta}= & B_{5} \partial_{t}\left(\partial_{t^{2}}^{2}-\partial_{x^{2}}^{2}\right)^{2}+B_{4}\left(\partial_{t^{2}}^{2}-\partial_{x^{2}}^{2}\right)\left(\partial_{t}+\zeta^{+} \partial_{x}\right)\left(\partial_{t}+\zeta^{-} \partial_{x}\right) \\
& +B_{3} \prod_{j=1}^{3}\left(\partial_{t}+\zeta^{(j)} \partial_{x}\right)
\end{aligned}
$$

with $B_{5}>0, B_{4}=-A_{2}>0$, and $B_{3} / z_{1} z_{2}$, equal to

$$
\begin{aligned}
& d_{*}\left(m_{01}+m_{02}\right)\left[2 n_{01} n_{02}+0.5 r_{0}\left(n_{01}+n_{02}\right)\right] \\
& \quad \quad+2 d_{*}^{2} r_{0} n_{01} n_{02}+2 m_{01} m_{02}\left(n_{01}+n_{02}\right)>0
\end{aligned}
$$

We follow the Whitham principle that in a wave motion with speed ζ the derivatives ∂_{t} and $-\zeta \partial_{x}$ of any quantity are approximately equal. The main waves are provided by the third-order operator (weak shock motion). The disturbances produced by the fifth- and fourth-order operators must be, for large time, exponentially damped by the presence of the main waves. For the wave motions with velocities $\zeta^{ \pm}$of the fourth-order operator this is explained by Whitham. ${ }^{(8)}$ Here we neglect the fifth-order operator, and a damping ($e^{\mu t}, \mu<0$) occurs provided $B_{3} B_{4}$ is positive and the inequalities (A.10) are satisfied. For instance, for a wave motion with velocity ζ^{+}we find

$$
\mu=B_{3}\left[\prod\left(\zeta^{(j)}-\zeta^{+}\right)\right] / B_{4}\left(\zeta^{+}-\zeta^{-}\right)\left[\left(\zeta^{+}\right)^{2}-1\right]<0
$$

Let us now study the damping of the wave motions $f(x \mp t)$ associated to the fifth-order (multiplicity 2) and fourth-order (multiplicity 1) operators. As in Whitham, ${ }^{(8)}$ with the same approximations, in such a wave motion $\partial_{t} \approx \mp \partial_{x}$ and a third-order $\partial_{x^{3}}^{3}$ differential operator (or $\mp \partial_{t^{3}}^{3}$) is factorized: $\left[d_{2}\left(\partial_{t} \pm \partial_{x}\right)^{2}+d_{1}\left(\partial_{t} \pm \partial_{x}\right)+d_{0}\right] \partial_{t^{3}}^{3}$ with $d_{2}=4 B_{5}>0, d_{1}=$ $-2 P_{2}(\mp 1)>0, d_{0}=\mp z_{1} z_{2} P_{3}(\mp 1)>0$. Seeking a damping factor when the time is large,

$$
\left[d_{2}\left(\partial_{t} \pm \partial_{x}\right)^{2}+d_{1}\left(\partial_{t} \pm \partial_{x}\right)+d_{0}\right] f(x \mp t) C(t)=0
$$

the solutions associated to $f\left(x-(-1)^{j} t\right)$ are $C=e^{\mu t}$, where $\mu<0$ satisfy $d_{2} \mu^{2}+d_{1} \mu+d_{0}=0$, or
$2 \mu^{2} n_{0 j} m_{0 j}+\mu\left[2 z_{1}\left(m_{0 j}+d_{*} n_{0 j}\right)+z_{2} d_{*} n_{0 j}\right]+d_{*} z_{1} z_{2}=0, \quad j=1,2$
with positive discriminants:

$$
\left[n_{0 j} z_{2} d_{*}+2 z_{1}\left(d_{*} n_{0 j}-m_{0 j}\right)\right]^{2}+16 z_{1}^{2} m_{0 j} n_{0 j} d_{*}>0, \quad j=1,2
$$

Lemma A3. The wave solutions $f(x \mp t)$ corresponding to the fifthand fourth-order terms are exponentially damped at large times, with the decay coefficients $\mu<0$ given by (A.11).

A5. Euler Weak-Shock Relations

In the Euler formalism we can also obtain the characteristic velocities as roots of a cubic polynomial. First we take into account in (3.7) and (3.8) the vanishing of two collision terms $a_{0 i}+b_{0 i}=0$. Second we assume that $n_{1 i}, m_{1 i}, r_{1}$ are small, their products being negligible, or $a_{0 i} \approx 0$. Third, from the linear conservation laws, n_{12}, m_{12}, r_{1} are linear functions of n_{11}, m_{11} and the relations become

$$
\begin{aligned}
m_{11} a_{(\mathrm{i})} & =n_{11} b_{(\mathrm{i})} \\
m_{11} c_{(i)} & =n_{11} d_{(\mathrm{i})} \\
a_{(\mathrm{i})} & =m_{02} \zeta(1+\zeta)-m_{01} \zeta(1-\zeta)-4 r_{0}\left(1-\zeta^{2}\right) / d_{*} \\
b_{(\mathrm{i})} & =(1-\zeta)\left[2 m_{01} \zeta d_{*}+4 r_{0}(1+\zeta)\right] \\
c_{(\mathrm{i})} & =n_{01}\left[1-\zeta+m_{02}(1+\zeta) / m_{01}\right] \\
d_{(\mathrm{i})} & =m_{02}(1+\zeta)-(1-\zeta) n_{01}\left(2 d_{*}+m_{02} / n_{02}\right)
\end{aligned}
$$

The compatibility condition $a_{(\mathrm{i})} d_{(\mathrm{i})}-c_{(\mathrm{i})} d_{(\mathrm{i})}=0$ leads to the roots (A.7).

A6. Infinite-Mach-Number Shock

In the (ii) state, we assume that $s_{1}=s_{2}=p_{1}=r_{00}=0$ with only $p_{2} \neq 0$. First we show that the (i) and (ii) states are positive if $1>\zeta>1 /\left[1+\left(d_{*} / 2\right)^{2} / a\right]^{1 / 2}>0$. From Section 3,

$$
\begin{array}{r}
y=(1-\zeta) /(1+\zeta)=\bar{n}_{02}>0 \\
\bar{m}_{01}=\bar{m}_{11}=d_{*} /\left\{-1+\zeta d_{*} / 2\left[a\left(1-\zeta^{2}\right)\right]^{1 / 2}\right\}>0 \\
\bar{m}_{02}=\bar{n}_{02} \bar{m}_{01} / a=\bar{m}_{12}=-y\left(\bar{m}_{11}+2 d_{*}\right)>0 \\
r_{0}=\bar{m}_{01}\left(\hat{n}_{02} / a\right)^{1 / 2}=\bar{r}_{1}=z\left(\bar{m}_{11}+d_{*}\right)>0
\end{array}
$$

Second, for the determination of the $\zeta_{(i i)}$ at the (ii) state, we perform a limiting procedure in $P_{3}=0$ (with $n_{0 i}, m_{0 i}, r_{0}$ replaced by s_{i}, p_{i}, r_{00}). Let $s_{i} \rightarrow 0, p_{1} \rightarrow 0, r_{00} \rightarrow 0$ with $p_{2}=$ cst. From $a p_{2} s_{1}=s_{2} p_{1}$ it follows that $s_{1} / s_{2} \rightarrow 0, s_{1} / \sqrt{p_{1}} \rightarrow 0$ and $2 P_{3} / z_{1} z_{2} d_{*} s_{2} p_{2} r_{00} \simeq \zeta_{(i \mathrm{i})}\left(1+\zeta_{(i)}\right)^{2}$ and the two possible characteristic $\zeta_{(i i)}$ are $0,-1$. The Lax condition gives $\zeta_{(i i)}=0<\zeta<\zeta_{(\mathrm{i})}$. Furthermore, $P_{i}>P_{i i}=0, \quad M_{i}-M_{i i}=2 \zeta\left(d_{*} n_{01}+m_{01}\right) /$ $(1+\zeta)+d_{*} r_{00}>0$ and the shocks are compressive with the (ii) upstream state at $+\infty$.

APPENDIX B. NON-RICCATIAN SOLUTIONS DEPENDING ON \boldsymbol{n}_{01} AND ARBITRARY $\overline{\boldsymbol{m}}_{01}, \overline{\boldsymbol{n}}_{02}$

For the non-Riccatian (1.2b) we have new parameters: $\bar{n}_{2 i}, \bar{m}_{2 i}, \bar{r}_{2}$, $\bar{\delta}_{i}, \bar{\sigma}_{i}$. Due to the existence of one linear relation with two densities, we find two classes of solutions which depend on the parameters (3.9), except ζ, which is fixed by a compatibility condition.

B1. Six New Relations Coming from the Nonlinear Equations

We substitute the non-Riccatian ansatz into (3.10), multiply by D^{2} and define two w polynomials A_{i} at the lhs and B_{i} at the rhs:

$$
\begin{gathered}
B_{i}:=a_{1 i}+b_{1 i}+\delta_{1} a_{0 i}+w\left(\delta_{1} a_{1 i}+\delta_{2} a_{0 i}+b_{2 i}\right)+w^{2} a_{1 i} \delta_{2} \\
-\gamma(1+\zeta)\left(n_{22}-n_{12} \delta_{1}-2 w n_{12} \delta_{2}-n_{22} w^{2} \delta_{2}\right) / \bar{\sigma}_{1}=A_{1} \\
-\gamma \zeta\left(r_{2}-r_{1} \delta_{1}-2 w r_{1} \delta_{2}-r_{2} w^{2} \delta_{2}\right) / \bar{\sigma}_{2}=A_{2} \\
a\left(n_{k 1} m_{22}+m_{k 2} n_{21}\right)-n_{k 2} m_{21}-m_{k 1} n_{22}=a_{11} \text { for } k=0, \text { and }=: b_{11} \text { for } k=1 \\
b_{21}:=a n_{21} m_{22}-n_{22} m_{21} \\
m_{k 1} m_{22}+m_{k 2} m_{21}-2 r_{k} r_{2}=a_{12} \text { for } k=0, \text { and }=b_{12} \text { for } k=1 \\
b_{22}:=m_{21} m_{22}-r_{2}^{2}
\end{gathered}
$$

Since the coefficients of w^{0}, w^{1}, w^{2} are the same on the lhs and rhs, we obtain from w^{2} :

$$
\begin{equation*}
\bar{\sigma}_{2} / \bar{\sigma}_{1}=\zeta a_{11} r_{2} /\left[(1+\zeta) a_{12} n_{22}\right], \quad \gamma / \bar{\sigma}_{1}=a_{11} /(1+\zeta) n_{22} \tag{B.1}
\end{equation*}
$$

and four other relations. We define scaled variables with the scaling parameters $n_{k 1}, k=0,1,2$:

$$
\begin{aligned}
& \delta_{i}=\left(n_{21} / n_{11}\right)^{i} \bar{\delta}_{i}, \quad i=1,2 \\
& a_{1 i}= n_{01} n_{21} \bar{a}_{1 i} \\
& b_{1 i}= n_{11} n_{21} \bar{b}_{1 i} \\
& b_{2 i}= n_{21}^{2} \bar{b}_{2 i} \\
& a\left(\bar{m}_{22}+\bar{m}_{k 2}\right)-\bar{n}_{k 2} \bar{m}_{21}-y \bar{m}_{k 1}=: \bar{a}_{11} \text { for } k=0, \text { and }=: \bar{b}_{11} \text { for } k=1 \\
& \bar{b}_{21}= a \bar{m}_{22}-y \bar{m}_{21}=\bar{b}_{11}-\bar{b}_{01} \bar{m}_{21} \bar{m}_{k 2}+\bar{m}_{22} \bar{m}_{k 1} \\
&-2 \bar{r}_{k} \bar{r}_{2}=: \bar{a}_{12} \text { for } k=0, \text { and }=\bar{b}_{12} \text { for } k=1 \\
& \bar{b}_{22}= \bar{m}_{21} \bar{m}_{22}-\bar{r}_{2}^{2}
\end{aligned}
$$

Recalling that $n_{11}=-n_{01} \bar{a}_{0 i} / \bar{b}_{0 i}$ is not arbitrary, we write the four relations

$$
\begin{align*}
\bar{\delta}_{1} & =\left(2 \bar{a}_{11} \bar{b}_{01}-\bar{a}_{01} \bar{b}_{11}\right) / \bar{b}_{01}\left(\bar{a}_{11}-\bar{a}_{01}\right) \\
& =\bar{r}_{2}\left(2 \bar{a}_{12} \bar{b}_{02}-\bar{a}_{02} \bar{b}_{12}\right) / \bar{b}_{02}\left(\bar{r}_{1} \bar{a}_{12}-\bar{a}_{02} \bar{r}_{2}\right) \tag{B.2}\\
\bar{\delta}_{2} & =\left(\bar{a}_{11} \bar{\delta}_{1}-\bar{b}_{21} \bar{a}_{01}\left(\bar{b}_{01}\right) /\left(2 \bar{a}_{11}-\bar{a}_{01}\right)\right. \\
& =\bar{r}_{2}\left(\bar{\delta}_{1} \bar{a}_{12}-\bar{b}_{22} \bar{a}_{02} / \bar{b}_{02}\right) /\left(2 \bar{r}_{1} \bar{a}_{12}-\bar{r}_{2} \bar{a}_{02}\right) \tag{B.3}
\end{align*}
$$

For the four equations (B.2)-(B.3) we have three unknown parameters $\bar{\delta}_{1}, \bar{\delta}_{2}, \bar{m}_{21}$ to be determined, and consequently ζ will be fixed by a compatibility condition.

Lemma B1. $\left(\bar{\delta}_{1}-\bar{\delta}_{2}-1\right)\left(2 \bar{a}_{11}-\bar{a}_{01}\right)=0$.
From the first of relations (B.2)-(B.3) and $\bar{b}_{21}+\bar{b}_{01}=\bar{b}_{11}$, coming from the N_{i} linear relation, the result is trivial. We call Sol.A and Sol.B the solutions $2 \bar{a}_{11}=\bar{a}_{01}$ and $\bar{\delta}_{1}=\bar{\delta}_{2}+1$.

Lemma B2. $\quad \bar{\delta}_{1}=2+\bar{a}_{01}(1+a y) / \bar{b}_{01}\left(a y+\bar{n}_{02}\right)$ (also $\bar{\delta}_{2}$ for Sol.B) is a known function of the arbitrary parameters $\bar{m}_{01}, \bar{n}_{02}, \zeta$ of (3.9). We define $\bar{\delta}_{m}=\bar{m}_{21}-\bar{m}_{11}$.

In the first relation of (B.2) for $\bar{\delta}_{1}$, both numerator and denominator factorize $\bar{\delta}_{m}$:

$$
\begin{aligned}
\bar{a}_{01}-\bar{a}_{11} & =\bar{\delta}_{m}\left(a y+\bar{n}_{02}\right) \\
2 \bar{a}_{11} \bar{b}_{01}-\bar{a}_{01} \bar{b}_{11} & =\bar{\delta}_{m}\left[a y\left(\bar{a}_{01}-\bar{b}_{01}\right)+y\left(\bar{a}_{01}-a \bar{b}_{01}\right)-2 \bar{b}_{01} \bar{n}_{02}\right]
\end{aligned}
$$

Lemma B3. \bar{m}_{21} is a known function of the arbitrary parameters $\bar{m}_{01}, \bar{n}_{02}, \zeta, \bar{m}_{21}=\bar{m}_{11}+\bar{a}_{01} / 2\left(a y+\bar{n}_{02}\right)$ for Sol.A and for Sol.B:

$$
\begin{aligned}
\bar{m}_{21}+d_{*}= & \bar{\delta}_{1} \bar{b}_{02} d_{*}\left(\bar{m}_{02}+y \bar{m}_{01}\right) /\left[2 \bar{b}_{02}\left(\bar{m}_{02}-y \bar{m}_{01}-2 \bar{r}_{0} z\right)\right. \\
& \left.+\bar{a}_{02}\left(-\bar{m}_{12}+y \bar{m}_{11}+2 z \bar{r}_{1}\right)\right]
\end{aligned}
$$

In Sol.A we use $\bar{a}_{11}-\bar{a}_{01}=-\bar{a}_{01} / 2$. For Sol.B, in the last relation of (B.3) both numerator and denominator factorize $\bar{\delta}_{m}$:

$$
\begin{aligned}
\bar{r}_{1} \bar{a}_{12}-\bar{r}_{2} \bar{a}_{02} & =\bar{\delta}_{m} z d_{*}\left(\bar{m}_{02}+y \bar{m}_{01}\right) \\
\bar{a}_{12}-\bar{a}_{02} & =\bar{\delta}_{m}\left(\bar{m}_{02}-y \bar{m}_{01}-2 \bar{r}_{0} z\right) \\
\bar{b}_{12}-2 \bar{b}_{02} & =\bar{\delta}_{m}\left(\bar{m}_{12}-y \bar{m}_{11}-2 z \bar{r}_{1}\right) \\
2 \bar{a}_{12} \bar{b}_{02}-\bar{a}_{02} \bar{b}_{12} & =2 \bar{b}_{02}\left(\bar{a}_{12}-\bar{a}_{02}\right)+\bar{a}_{02}\left(2 \bar{b}_{02}-\bar{b}_{12}\right) \\
\bar{r}_{2} & =\bar{b}_{02} \bar{\delta}_{1}\left(\bar{r}_{1} \bar{a}_{12}-\bar{a}_{02} \bar{r}_{2}\right) /\left(2 \bar{a}_{12} \bar{b}_{02}-\bar{a}_{02} \bar{b}_{12}\right)=z\left(\bar{m}_{21}+d_{*}\right)
\end{aligned}
$$

Lemma B4. From a compatibility condition we find ζ as a function of $\bar{m}_{01}, \bar{n}_{02}$.

From Lemmas B9 and B10, with \bar{m}_{21} known as a function of ζ, \bar{m}_{01}, \bar{n}_{02} we deduce $\bar{r}_{2}, \bar{m}_{22}, \bar{a}_{1 i}, \bar{b}_{1 i}, \bar{b}_{2 i}, i=1,2$, while $\bar{\delta}_{1}$ is known. For Sol.A the two last relations of (B.2)-(B.3) give both $\bar{\delta}_{2}$ and a compatibility condition for ζ. For Sol.B the first relation of (B.3) fixes ζ.

REFERENCES

1. R. Gatignol, Lecture Notes in Physics, No. 36 (Springer-Verlag, Berlin, 1975); TTSP 16:809 (1987).
2. T. Platkowski and R. Illner, SIAM Rev. $30: 213$ (1988).
3. H. Cabannes, J. Méc. 14:703 (1975); Mech. Res. Commun. 12:289 (1985); D. d'Humières, P. Lallemand, and U. Frisch, Europhys. Lett. 2:291 (1986).
4. H. Cornille, RGD 17:870 (1990); Adv. Kin. Theory, R. Gatignol, ed., p. 109; Adv. Math. Appl. Sci. 2:131 (1990); Phys. Lett. 154A:339 (1991); TTSP 20:325 (1991); JMP 32:3439 (1991).
5. T. B. Bountis, V. Papageorgiou, and P. Winternitz, JMP 27:1215 (1986).
6. H. Cornille and T. Platkowski, JMP 33:2587 (1992).
7. P. D. Lax, Commun. Pure Appl. Math. 10:537 (1957); CIMS Monograph 11 (Society for Industrial and Applied Mathematics, 1973).
8. G. B. Whitham, Commun. Pure Appl. Math. 12:113 (1959); B. Nadiga, H. Sturtevant, G. Broadwell, RGD 16:155 (1988).
9. L. Tartar, Sém. Goulaouic-Schwartz I (1975); R. Balian, Y. Alhassid, H. Reinhardt, Phys. Rep. 131 (1986).

[^0]: ${ }^{1}$ Service de Physique Théorique, CE Saclay, F-91191 Gif-sur-Yvette, France.
 ${ }^{2}$ Department of Mathematics, Informatics and Mechanics, Warsaw University, Warsaw, Poland.

