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We study nonstandard shock wave similarity solutions for three multispeed dis- 
crete Boltzmann models: (1) the square 8vi model with speeds 1 and x/2 with 
the x axis along one median, (2) the Cabannes cubic 14vl model with speeds 1 
and , f i  and the x axis perpendicular to one face, and (3) another 14vi model 
with speeds 1 and ,4~. These models have five independent densities and two 
nonlinear Riecati-coupled equations. The standard similarity shock waves, solu- 
tions of scalar Riccati equations, are monotonic and the same behavior holds 
for the conservative macroscopic quantities. First, we determine exact similarity 
shock-wave solutions of coupled Riccati equations and we observe non- 
monotonic behavior for one density and a smaller effect for one conservative 
macroscopic quantity when we allow a violation of the microreversibility. 
Second, we obtain new results on the Whitham weak shock wave propagation. 
Third, we solve numerically the corresponding dynamical system, with micro- 
reversibility satisfied or not, and we also observe the analogous nonmonotonic 
behavior. 

KEY WORDS: Discrete Boltzmann models; Riccati equations; similarity 
shock wave solutions. 

1. I N T R O D U C T I O N  

F o r  the  dens i t ies  N i a s soc i a t ed  to  the  ve loc i t i es  vi o f  the  d iscre te  B o l t z m a n n  

m o d e l s  ( D B M s  (1'2)) the  s t a n d a r d  s imi la r i ty  shock  waves  (which  we call  

R i c c a t i a n  so lu t i ons )  

N i = n o ~ + n i / D ,  D = l + w ,  w = f i e  ~,  q = x - ~ t  (1.1) 
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(no~, ni, 6, 7, ff being constants) are solutions of scalar Riccati equations, for 
instance, NI,, = aN 2 + bN1 + c. These densities are monotonic q-dependent 
functions. The same property holds for the macroscopic conservative quan- 
tities mass M, momentum J, and energy E, which are linear combinations 
of the densities. In that case, the nonmonotonic effects can exist only for 
nonconservative macroscopic quantities. 

Is it possible, either for the microscopic densities or for the macro- 
scopic conservative quantities, to observe nonmonotonic effects? Clearly 
we must enlarge the class (1.1). 

In this study we answer this question for a family of multispeed 
DBMs, (3'4) Considering for the DBMs the restriction of their system of 
partial differential equations (PMEs) along the x axis and subtracting their 
linear conservation laws, we obtain PDEs with only one, two, three ..... 
independent nonlinear equations. The case of only one really nonlinear 
equation for a density N1 leads to the scalar Riccati equation, which is 
linearizable and, taking into account the positivity of the densities, leads 
to the solutions (1.1). We discuss the important case of five independent 
densities and two coupled-Riccati nonlinear equations: 

2 

N~,~= ~, (Uidik+cik)Nk+f~UZ+ei,  i = 1 , 2 ,  jv~i (1.2a) 

The standard linearization corresponds to the so-called (5) projective Riccati 
system (fj = 0), which is impossible for the presently studied DBM because 
it requires that the front shock velocity ff be equal to the velocity of one of 
the particles. Note that the type of solutions (1.1) is possible for the PDE 
(1.2a). (6) We propose (6) a new ansatz, 

Ni = noi + (nu + wn2i)/D 

D = l + f l w + f z W 2 ,  w=e~,, r l = x _ ~ t  (1.2b) 

which we call non-Riccatian). Let us consider two classes of DBMs with 
nonlinear equations of the type (1.2a): (1) mixing speeds models, (6) and (2) 
models recently called the class I hierarchy (4) with the same d-dependent 
system of PDEs. These DBMs include (3' 4) the square 8vi model with the x 
axis along one median, the 14vi cubic Cabannes model with speeds 1 and 
x/3, and another 14v~ model with speeds 1 and x/2, which can be con- 
sidered as a superposition of two 8v~ models. Solutions of the type (1.2b) 
and solutions of the standard Runge-Kutta procedure with nonmonotonic 
behavior have been obtained for the type (1) models (6) and the aim of this 
paper is to extend these results to the type (2) models. 

In Section 2 and Appendix A1 we present the three physical models of 
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class I type. The five densities M1, N~, R, M2, and N 2 of this DBM are 
associated to the velocities whose projections along the x =  xl axis have 
coordinates 1, 1, 0, - 1, and - 1. They satisfy the same 1D PDE with three 
linear conservation laws and two coupled nonlinear equations: 

d = 2 ,  3, d .  = 2 ( d -  1) 

p+_ =Ot++_Ox, p+NI+p_N2=O,  p + M ~ + p _ M 2 + d ,  Rt=O 

p + M ~ - p _ M 2 + 2 d ,  p+Nt =0,  p_N2/61=aM2N1_MIN2 (L3) 

Rt/~2 = M1 M2 - R 2 

with ff~ proportional to the cross sections a~, 6 2 = 2a2/d, and a > 0 a fixed 
number, but in general a r 1, which means that we allow a violation of the 
microreversibility. 

In Section 3 we discuss different theoretical aspects of the class I 
hierarchy. First we study what we call the Rankine-Hugoniot  (RH), rela- 
tions which contain both the three conservation laws for density functions of 
a similarity variable 11 with propagation speed 

Ni(~I), Mr R(q), ~ l=x-~ t ,  i = 1 , 2  (1.4) 

and the four relations coming from the vanishing of the two collision terms 
for the two equilibrium states. These two states can be determined from 
both a scaling parameter called n0~ and two arbitrary parameters, ~ and 
a > 0. Furthermore, three densities are linear combinations of two other, so 
that we can rewrite two of the nonlinear equations (1.3) as a coupled- 
Riccati differential system for the two remaining densities, chosen to be N2 
and R. Second, for the stability of the two equilibrium states, we generalize 
known weak shock results. In the Whitham ~8) approach we allow a r  1, 
a > 0 ,  and 6i in (1.3) to be arbitrary. We find the sum of a fifth-, fourth-, 
and third-order differential operator. We show that the wave motions 
associated to the higher-order operators are exponentially damped at large 
time by the main waves (characteristic velocities) provided by the lower- 
order operator. Third, we study the Lax admissibility (established for 
conservation laws alone) criteria, ~7' 1~ which allow the determination of the 
sound speeds associated to the upstream and downstream states. Requiring 
that both shock wave and sound wave are moving in the same direction in 
the upstream state, we show that this property holds in both upstream and 
downstream states. Finally, we show, by changing the no~ values, that a 
decrease as well as an increase of the local Boltzmann entropy (satisfying 
an H-theorem) across the shock are possible, without changing the 
parameters entering into the shock inequalities. 
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In Section 4 we determine non-Riccatian solutions (1.2b) which 
depend on one scaling parameter and two arbitrary parameters while 
and fit/if2 are fixed. We find two classes of solutions with either N i of the 
Riccatian type or the five densities being non-Riccatian. For the three 
models we give explicit examples with overshoots for one density M, and 
small undershoots for the energy E. We observe nonmonotonic effects only 
if a - 1 > 0 is sufficiently large. For  a - 1 we get monotonic non-Riccatian 
solutions. 

In Section 5 we consider the general similarity solution of (1.3) in the 
form (1.4), and reduce the original system to a 2D dynamical system. 
We find numerically the integral curve of this system, which gives the 
macroscopic shock profiles. The similarity solutions depend on ~, on two 
parameters of the Maxwellian, and on ~2. We find the overshoot for M1, 
not restricted to a > 1, but also possible for a <~ 1. For  the energy we 
observe a nonmonotonic behavior for a > 1, which disappears when a --+ 1. 

2. CLASS I H I E R A R C H Y  OF M U L T I S P E E D  M O D E L S  

In Appendix A1 we define the class I models by giving the coordinates 
(Xl, x2) for d = 2 and (xl,  Xz, x2) for d =  3 of the velocities with projections 
+ 1, 0 along the x = xl axis, which are associated to the five independent 
densities Ni, M;, and R, i =  1, 2. 

The macroscopic conservative quantities mass M, momentum J, and 
energy E are linear combinations of the microscopic densities 

M =  M1 + M2 q- d , ( R  + N 1 -t- N2) 

J =  M 1 - M 2 + d,(N~ - N2) (2.1) 

E = (M1 + M2 + d , ) /2  + d ,d** ( N  1 + N2) 

d** = 1 and d** = 3/2 for the Cabannes model and we deduce the velocity 
U = JIM and the pressure P = 2 E -  M U  2. 

With microreversibility satisfied we consider the Boltzmann-H 
functional for which we are able to prove an H-theorem and call 
Boltzmann entropy the associated S = - H .  With microreversibility 
violated, we modify, as did Tartar, (9) the Boltzmann entropy, which 
satisfies an H-theorem. Introducing the relative entropy S--  - H  with 

2 

H = ~ [ d ,  Ni l o g ( N j ~ )  + M~ log(Mjri~)] + d,  R log(R/rio) 
i = 1  

~aril/oq~2 =a, fl~=rilfl2 

we find [ ~ , +  ~?x( "'" )]H<~0. A simple choice is ri~= r io=e2 = 1, ~x= 1/a. 
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3. RH SOLUTIONS, W H I T H A M  AND LAX CONDITIONS, 
BOLTZMANN ENTROPY 

3.1 .Determination of the Two Equilibrium States 

We assume that  the densities (N1, N2, M1, M 2 ,  R) are functions of 
a similarity variable q = x - Q ,  and define the two Maxwellian states 
corresponding to [t/[ = ~ :  

(i) (no1, no2, toOl, too2, ro), (ii) (Sl, s2, P l ,  P >  roo) (3.1) 

with si = no1 + nli, Pi = moi + ml~, i = 1, 2, roo= ro + r l .  The  three linear 
conservat ion laws (1.3) give relations for n~, ml,,  q :  

y := (1 - ~)/(1 + ~), z := 2(1 - ~)/~d,,  n12 = ynll (3.2) 

ym11=m12+ 2r ly /z ,  mll  + 2d,  n11+ m12/y=O (3.3) 

The two collision terms in (1.3) vanish for the two Maxwellian states: 

ano, mo2=noemol, mmmo2=r 2, a s l p 2 = s 2 p l ,  plp2=r2o (3.4) 

am := a(nol m12 q-- mo2r / l l  ) - -  n o 2 m l l  --/77ol/~12 
(3.5) 

bol  : =  anllm12 -- n~2m11 

ao2 : =  mm m12 + m o 2 m l l  - -  2ror 1 

2 (3.6) b 0 2 ~ - m l l m l 2 - - r  1 

aoi + boi -- 0, i = 1, 2 

For  the determinat ion of the two states (3.1) we have 11 parameters  ~, n~,  
rn~i, and rk with k =  0, 1, i - -1 ,  2 (a > 0 is fixed), and seven independent  
relations. F rom the parameters  nm > 0 and nll  we define scaled variables 
rt/~2 = n k l n k 2 ,  mki=nklrhk~, rk=nkl?g, k = 0 ,  1, aoi=nmnl~do~, be,.= n~l/~o~, 
and rewrite the relations 

the2 = rio2rhoja, re = (rnm rho2) m (3.7) 

fit12 = - -  y ( r r t l l  + 2d, ) ,  71 = z(n~11 + d , )  

nll= -nolhoi/[~oe, i =  1, 2 (3.8) 

L e m m a  1. The two Maxwellian states can be determined from the 
knowledge of one scaling parameter  no~, two scaled parameters,  and the 
propagat ion  speed (: 

no1 > 0, r~ol > 0 arbitrary,  r~o2 > 0 arbitrary,  ~ arbitrary,  I([ < 1 (3.9) 
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First from (3.8) we obtain rho2 and ro and, with nol, deduce the 
positive parameters of the Maxwellian (i). Second, in Appendix A2, from 
6o~/)o2 = 8o2/~ol, we show that th~ is the root of a cubic polynomial with 
coefficients determined by (3.9). Third, from the knowledge of rh~ and 
(3.8) we deduce m12, rl and aoi,/~o;- Fourth, from n t l =  -- nolaol/bOl we get 
nll and consequently nli, ml;, rl or finally the Maxwellian (ii). 

3.2. Coupled-Riccati Equations for Two Densities 
(Appendix A3) 

Corollary 1. The nonlinear equations (1.3) lead to a Riccati-coupled 
system for N 2 and R. 

We first rewrite the two nonlinear equations (1.3) for similarity waves: 

(1 +~)N2 ,~ /# I=MIN2-aN1M2,  ~R~/~2=R2-M1M2 (3.10) 

N1, Mr,  and m 2 from the three linear conservation laws are linear 
combinations of N2 and R, and substituted into (3.10) lead to a coupled 
Riccati system: 

Nz.n = d l lN  2 + dl2NzR nt-fl R2 q- CllN2 + ClzR "~ el 
(3.11) 

R, = f2N  2 + d21N2 R + d22R 2 + c21 N2 + c22R + e2 

The coefficients and the solutions of (3.11) are functions of the arbitrary 
parameters (3.9) and of at~a2. For a projective Riccati system f2 = 0 or 

= - 1, which is impossible. 

3.3. Whitham Weak Shock Wave Propagation (Appendix A4) 

For the determination of the characteristic velocities it is usual to refer 
to the weak-shock Lax-Whitham theory. (7' 8) In the Whitham approach we 
study the stability of an equilibrium state when different linear differential 
order terms are present. How can wave motions defined by higher-order 
terms be exponentially damped by the main wave provided by the lower- 
order term ? In the Lax approach we study the inequalities which must be 
satisfied by both the upstream and downstream states. We cannot apply 
directly the previous results (1) because here we assume that the ~,. are 
arbitrary and we allow a violation of the microreversibility. The Whitham 
approach was recently considered (8) for a 9vi DBM where only the con- 
tribution of the main wave given by the lowest order operator was dis- 
cussed and it is not clear that the higher waves do not modify the results. 

For the present models, after linearization around a Maxwellian, we 
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find the sum of a fifth-, fourth-, and third-order operator with associated 
polynomials Ps, P4, and P3- We must verify that the higher wave motions 
with speeds given by the P4 = 0, P5 = 0 roots are exponentially damped by 
the main wave motions (sound wave roots ~(J~ of P3 = 0). While the Ps, P3 
roots are independent of  ai, this is not true for the two P4 = 0 roots. In 
Lemma A1 we prove both that the five Ps roots and the four P4 roots are 
interlaced with two roots _+ 1 having multiplicity 2 in P5 and 1 in P4, while 
the two other ~ -+ roots of P4 are of opposite sign and modulus less than 
1 and that the three ~(J), j =  1, 2, 3, roots of P3 are real and belong to 
l - 1 ,  1[. In Lemma A2 we prove that the P4, P3 roots are interlaced with 
the strict Whitham-like inequalities and consequently the wave motions 
with velocities ~-+ are exponentially damped for large time. Finally we 
prove (Lemma A3) that the wave motions with velocities _+1, present in 
both Ps, P4, are also exponentially damped for large time. The three 
weak-shock velocities r(J) written in (A.7), for the (i) state can also be '~(i), 
found (Appendix A5) from the Euler equations. 

3.4. Lax Admissibility Criteria 

From the above study there exist three different roots r(J) associated (i) 
to Maxwellian (i) and three other r(J) to Maxwellian (ii). However, we ~(ii) 
do not know whether, for instance, the (i) state is the upstream or 
downstream state. When the microreversibility is satisfied, Gatignol (1) has 
explained the application of the Lax (7) admissibility criteria to DBMs. 
Let us call ~ the characteristic speeds associated to the states at + oc. 
The Lax conditions are: for some index j, l~<j~<3, the two following 
inequalities hold: 

~ (J) ~ ~ ~" ~ (~J')oo , ~(j~l) < ~ < ~(j+ 1) (3.12) 

If the two Lax conditions are satisfied, then the j index Lemma 2. 
is j = 2 .  

Since j, j_+ 1 is present, only j =  2 is possible. In DBMs, Gatignol (1) 
has presented a weaker condition with only the first condition satisfied and 
with also j = 1 or 2. As we shall see, the satisfaction of  Lax conditions does 
not always guarantee the subsonic and supersonic inequalities. Let us call ~up 
and ~down the characteristic velocities satisfying the first Lax inequality and 
corresponding to the upstream and downstream states, respectively, 
V = ~ -  U, and Vup and Vdown the associated shock velocities and Wup and 
Wdown the sound wave velocities: 

Wup= Vup-  ~-~ ~up, Wdown ~--- Vdown-- ~-J- ~dow n 

VupMup = VdownMdown (3.13) 
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We assume that the shock is physical if both the shock inequalities 
I Waown I > ] Vdow, [ and ] Wup[ < [Vup] are satisfied and only if at the 
upstream state (and at the downstream one) the shock wave and the 
sound wave move in the same direction. This means Vup Wup > 0 and 
Vaow, Waown > 0 and, from V~p Vdown > 0, the four waves move in"the same 
direction. 

I_emma 3. If ~down=(o~, the shock inequalities are satisfied iff 
Vup<O and W~p<O. 

The Lax condition ~aow, < { < {np implies Wdow, < Vdow, and W~p > V~p. 
If Vup > O, the supersonic inequality cannot be satisfied, so that V~p < 0 and 
Vdown < 0 and the subsonic inequality Wdown < Vdown < 0 is satisfied. If 
W~p < O, the supersonic inequality is also satisfied, while if Wup > O, the 
two waves move in opposite direction at the upstream state. 

kemma 4. If ~up = ~ ,  the shock inequalities are satisfied iff V~p > 0 
and W~p > O. 

The Lax condition ~up< ~ < ~dowla implies W=p<//up and Wdow, > Vdow,. 
If V~p < O, the supersonic inequality is violated, while if W=p < O, then 
Vuv W=p < O. We notice that the Maxwellian states depend on the scaling 
parameter n01, while the parameters of the Lax conditions ~, /-u) as well ~• 
as Vi, Vii, Wi, and Wii are  independent of not. 

3.5. Local B o l t z m a n n  Ent ropy  

Let us call Sup and Saown the two upstream and downstream S values, 
respectively, and Si and Sii the S values associated to the (i) and (ii) states, 
respectively. We find 

2 

- - S i =  ~" [d.nojlog(noJ~j)+mojlog(moj)]+d.rolog(ro), a ~ l = ~ 2 = l  
j = l  

and 

2 
-- Sii = ~ [d, sj log(sJej)  + p j  log pj]  + d .  roo log(roo) 

j = t  

These asymptotic local entropy quantities are determined from the RH 
relations and no1 is a scaling parameter for the asymptotic densities noi, 
too;, ro, s~, Pi, and ro0 (the scaled variables no2, rho~, ro, s~,/5~, and r0o are 
independent of nm), but not for Si and &i. Let us define AS = Saown - Snp, 
and AM=Maown-Mup=nmA2~, with zli~r a function of the scaled 
variables and independent of nm. We find AS/no~ = - (log not) AM+ F, 
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with F constructed from the scaled parameters and independent of no1. 
When no~ varies, the lhs (and also the rhs) has values from - ~ up to + 
with only one zero for no~ = no~.~. We assume a compressive (rarefactive) 
shock or A3~r 0 (<0) .  It follows that A S < O  ( > 0 )  for no~ ~> 1 and A S > O  
( < 0 )  for noa ~ 1. For rarefactive (compressive) shocks, there exists a critical 
value nol,~ of  the scaling parameter such that AS  < 0 ( > O) for no1 < no1 ,~ and 
A S > O  (<O) for  no1 >nol.~. 

4. NON-RICCATIAN EXACT SOLUTIONS (APPENDIX B) 

4.1. New Relations for the Parameters (see Appendix B1) 

The densities are of the non-Riccatian type (1.2b): 

Ni = noi + (nli + wn2i)/D, M~ -- mo~ + (m ii + wm2i)/D 

R = r o + ( r l + w r 2 ) / D ,  D = l + ~ l w + ~ 5 2 w  2, w = e  ~'~, ~ l = x - ~ t  

When ]r/t ---, ~ the limits of the densities are the two states defined in 
(3.1). Consequently, the nki, mk~, and rk ( k = 0 ,  1; i =  1, 2) satisfy the rela- 
tions and the properties studied in Section 3. Here we introduce both eight 
new parameters ~', r2, n22, m2i, and 6i (i = 1, 2), a2/a~ (with n21 as a scaling 
parameter) and nine new relations, or one more relation than parameters. 
The solutions will depend on rho~ and ~o2 as arbitrary parameters, and no~ 
and n21 as scaling parameters, while ~ will be found from a compatibility 
condition. 

The linear conservation laws give the relations (3.2)-(3.3) for the 
scaled parameters associated to n21: 

n22 = nz2/n21 = y ,  m2i=n211~12i, r2=n2172 

/77/22 = - -  y(n~/21 + 2d.),  ?2 = z(rh21 + d , )  

The two nonlinear equations (3.10) give six new relations: 

7( 1 + ~)/al = ala/nz2 = (bll + ao161)/( gln12 -2n22) 

= (b21 + 3 2 aol )/(2n i2 ~52 - -  n21 C51 ) 

7~/~2 = a12/r2 = (b12 + filao2)/(61 rl - 2r2) 

= (b22 + 62ao2)/(2r132 - r261) 

where the al~ and /~1i, i =  1, 2, defined in Appendix B1, are linear in the 
parameters n2~, m2i, and r2, while b2i, i =  1, 2, are quadratic in these 
parameters. 

822/71/3-4-24 
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4.2. Solutions As Functions of no1, rhol, r~o2 (see Appendix B) 

From the parameters n~l, k = 0 ,  1,2, we define scaled quantities 
~Sk-'-~k(n21/nll) k, ali =-nmn21{tai, and bki = nkln21bki, k = 1, 2. We quote the 
main results. First (Lemma B1) we have two solutions: 61 = and r + 1 
(respectively called Sol.B and Sol.A). Second (Lemma B2) and third 
(Lemma B3), 61 and /~21 a r e  known functions of the arbitrary parameters 
n3ol, I/o2, and ~. Finally (Lemma B4) all parameters are constructed from 
the arbitrary ones, and { is fixed by a compatibility condition and n2~ such 
that 61 ~--- (~1 (rt21/rt11) > O. 

4.3. Properties of the Non-Riccat ian Sol.B: (Sl ~" (S2 Jl" 1 

We define # := wn21/nn, find D = 1 + #6~ + wZ62 --= (1 + #)(1 + 1~(~2) , 
and obtain 

Ni = noi + n,i/(1 + w$2) 

m~ = mo~ + mai(1 + g'r~2jth~i)/D 

R = r o + rl(1 + l#r2/il)/D 

Ni are monotonic solutions of the Riccatian type, while Mi and R are 
non-Riccatian only if/~21 ~/~11" (On the contrary, for 3~ r 32 + 1, the five 
densities can be non-Riccatian.) 

L e m m a  5. For positivity we must have # > 0 or nzl/nn > O, 3 2 • O. 

L e m m a  6. Sufficient conditions for nonmonotonic behavior of the 
densities Mi and R are, respectively, 6 M, = 31rnljrh2~ < 1 and 6 R = 3171/r2 < 1. 
The signs of the derivatives M~,, and R,  are given by 

~2 + (alr~l~/r~2~- 1) + 2~',~1,/r~2i, ~2 + (~ ~1/~2- 1) + 2~1/f2 

4.4. Numerical  Calculations 

Figure 1 presents for (a) the d =  2, (b) the d =  3, d** = 1, and (c) the 
d =  3, d** = 3/2 models numerical curves for positive non-Riccatian solu- 
tions (also see Table I). We observe (except Fig. lc) similar features: over- 
shoots for the microscopic density M1, small undershoots for the energy E, 
and monotonic behavior for the mass M. All the densities (except M1 in 
Figs. la  and lb) are monotonic. For a ~< 1 we have not found both positive 
densities and a 2 > 0. For a > 1 we have obtained positivity, but only for 
a -  1 > 0 sufficiently large have we observed nonmonotonic effects. In order 
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Fig. 1. Class I models, (a) d= 2, (b) d= 3, d** = 1, and (c) d= 3, d** = 3/2. 

to check the existence of  M1 overshoots ,  a useful cr i ter ion is p rov ided  by  
6M1 < 1 in Figs. l a  and  lb ,  and  > 1 in Fig. lc. 

F o r  M, P, V, and  W the co r r e spond ing  values M~, Pi ,  V~, and  

Wi = Vi - ~ + (i for s tate (i) and  Mii ,  Pii,  Vii, and  Wi = Vi - ~ + ~ii for state 
(ii) are  posit ive.  The shocks  are rarefact ive with M and P decreas ing across  
the shock.  In  Figs. l a - l c  we find tha t  the Lax  index is j =  2; for Figs. l a  
and  l b  the ups t r eam state (ii) is at  + ~ ,  which is conf i rmed by  7 < 0, while 
in Fig. l c  we find that  the ups t r eam state (i) is at  + ~ ,  in agreement  with 

Table I 

a rnol no2 --~ --~0) --~(ii) aa a2 3M~ 7 nol,~ 

Fig. la 15.12 0.06 14.9 0.42 32x 10 4 0.75 1 2.6 0.79 - 2.1 
Fig. lb 8.72 0.45 7.7 0.25 - 5  • 10 -3 0.57 x / ~  1.1 0.79 - 0.26 
Fig. lc 1.01 2.54 1.03 46• -4 5x10 -3 39• -4 1 3x10 -6 2.18 + 0.12 
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7>0 .  Due to ~up=~oo (Lemma 4) and V i>0  and Wi>0 ,  the shock 
inequalities are satisfied. 

We have calculated Sup, Sd . . . .  and A S  = Sup - Sdown when no1 is vary- 
ing (in Figs. la and lb Sii = Snp; and S i=  Sup in Fig. lc). We find that the 
Boltzmann entropy decreases (or A S  < 0) for no1 < n0~.c (see the no.~,c values 
in Table I) and increases when no1 > nol,c. 

5. SOLUTION BY A D Y N A M I C A L  S Y S T E M  A P P R O A C H  

In this section we solve numerically the 2D dynamical system (3.11), 
with the limit values corresponding to type (i) and type (ii) equilibria. The 
limit conditions are either lim(N2, R) = (no2, ro) when ~/~ oo and (s2, roo) 
when ~ --+ - o% or the inverse, and depend on which Maxwellian is at -T- oo 
(Section 3.4). In the general case, the free parameters of the problem are 
(see Lemma 1) no1 = 1, rhol, no2, a2, and (. 

We solve (1.3) using a Runge-Kutta fourth-order procedure, with the 
initial data N2 = no2 + el and R = r o + e2, or N1 = s2 + el and M1 -- roo + a2, 

1,0 

0.5 

I [C I I I t 

A 

-0.I 0.I 

I [ 

1,0 

0.5 

-0.1 

b 

Fig. 2. 

E I I '1 

I t I ~1 
0.1 

M x profiles for d =  2. 
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ei small, depending on the direction of the integration. We start the integra- 
tion from a neighborhood of the saddle, in a direction which can be 
calculated by the analysis of the eigenproblem for the linearized equations, 
and we end up in an arbitrary close neighborhood of the second singular 
point (node). 

In Fig. 2a we present M1 for different ( values and the isotropic 
Maxwellian (i): no1 . . . . .  r 0 = 1, d =  2. Curves A, B, and C correspond, 
respectively, to (--0.98, 0.99, and 0.995. Note that M 1 overshoots if ~ is 
close to unity. 

In Fig. 2b we present the influence of 0- 2 on M1. Curve C corresponds 
to 0"2 = 1, curve D to ch=4 ,  and curve E to ~r2=0.5. The shock 
inequalities, and the common direction of the sound and shock waves in 
both equilibrium states, are satisfied, and the shocks are compressive. State 
(i) is at + 0% and M and P increase from (i) to (ii). 

We also note another family of solutions [compressive shocks, state 
(i) at - o 0 ] ,  with d = 3 ,  rhol =0.1, ~o2 = 10, and ~= -0 .3  with varying 0"2 
and a. For a =  10 and 0"2--10 we observe an M1 overshoot and an E 
undershoot. For a = 10 and 0"2 = 1 the M~ overshoot disappears. For a 
decreasing to 1 the energy undershoot also disappears. 

A P P E N D I X  A. CLASS I M O D E L S ,  RH RELATIONS,  
W H I T H A M  INEQUALIT IES,  A N D  
EULER W E A K - S H O C K  RELATIONS 

A1. Three Models  of Class I 

For the d = 2, d = 3, ~1 = al xf16/2 and d =  3, ~1 = 0"1 x/5/2 models we 
give the planar and spatial coordinates of the velocities associated to Ni, 
Mi, R: 

NI:(1 , __1), N 2 : ( - 1  , _+1), / ~ : ( 1 , 0 ) ,  

R:(0, +1), @1=o'1x/5/2, NI"(1, +1,  +1),  

and 

MI:  (1, 0, 0), M2: ( - 1 ,  0, 0), 

M2: ( -  1, 0) 

N2: ( - 1 ,  +1,  +1)  

re(o, +1,o), (o,o, +1) 

N~:(1, +1 ,0) , (1 ,0 ,_+1) ,  N 2 : ( - 1 ,  + 1 , 0 ) , ( - 1 , 0 ,  +1)  

M~ : (1, 0, 0), M 2 : ( - 1 , 0 , 0 ) ,  R:(0, +1 ,0 ) , (0 ,0 ,  +1)  
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A2. Determinat ion  of J1~11 AS a Function of the Arbi t rary 
Parameters rhol, noz, and i; 

F r o m  (3.2) and  (3.8) 

3 

k = O  

- - _ - - -2 a(rh12 _~_/~02)__/~02ff/11__ yfft01 with b01 =an~12-yrh11 , b o 2 - m l l m 1 2 - r l ,  do1 = 
~02=rholrhx2+rho2rhl~--2?o?l .  We define A : = a y + f i 0 2 ,  Z = y + z  2, and 
rh11 is the roo t  of  a cubic polynomial .  We have 

-s = r~11A + y ( 2 a d ,  + r ~ o l ) -  affto2 

- b o 2  = (th21 + 2d ,  f f t l , ) Z +  z d , 2  2 

- a o 2  = rh11(yrho~ + 2FoZ - rno2) + 2d , (ymol  + ?oZ) 

-/~Ol = y(1 + a)n~11 + 2ayd ,  

A 3 = A Z  

A 2 = Z [ ( 2 a d ,  + rhol ) y - arho2 ] + 2d ,  Z A  
(A.1) 2 2 A 1 = Az  d ,  + 2d ,  Z [ y ( 2 a d ,  + rhol) - an~o2 ] 

A o = z2d 2 [ y ( 2 a d ,  + thol ) - atho2 ] 

B 3 = 0  

B 2 = y(1 + a)(yrhol + 27oZ - n~o2 ) 

B 1 = 2 y d , [ y ( 1  + 2a)rhol + Zfo(1 + 3a) - arho2 ] 

Bo = 4yadZ,(yrnot + roz) 

A3. Riccat i -Coupled Equations for N z, R 

We write N 1 ,  M1, M2 as linear combina t ions  of N 2 ,  R: 

Na = [(1 + ( )N2 + C1]/(1 - ~) 

Ma = [ ( ( d -  1)R - d , (1  + ~ ) g  2 + (C2 + C3)/2 - d ,  C1]/(1 - ()  (A.2) 

M 2 = - -  d ,  N 2 - -  [ ( ( d -  1 )R + (C2 - C3)/2 + d ,  C 1 ] / ( l  -~- ()  

Subst i tut ing into (3.10), we obtain  the Riccat i -coupled system (3.11) for 
N2, R. The  coefficients are functions of bo th  the pa ramete r s  (3.9) and of ai, 
i = 1, 2. We have 
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du = d ,  6 x ( a -  1)/(1 - () 

d12 =61(1 + a )  ~ ' (d-  1)/(1 _~.2) 

f l = O  

d22 = 8211 + ~2(d_ 1)2/(1 _ (2)] /(  

d2x = 0  

f2  = - 62d2,( 1 + ()/~(1 - ~') (A.3) 

c1~ = 6 1 a ( ( d -  1)C~/(1 + ~)(1 - ~2) 

Cll = 61 [-C2(1 + a )  + C3( I  - a )  + 2d, C1(2a - 1)-1/2(1 - ~2) 

e 1 = 6 1 a C 1 ( C 2  - C 3 + 2d, G ) / 2 ( 1  + 0(1 - ~~) 

C21 ~- 6 2 d , ( C  3 - 2d,  C~)/~'(1 - ~') 

c22 = 6 2 ( d -  1 ) C2/(1 - ~2) 
e2 = 6 2 [ C ~ -  (C3 - 2d,  C1)2]/4~(1 - ~2) (A.4) 

We note that du = 0 if a = 1, and f2  = 0 if ~ = - 1. 

A4. General izat ion of the Weak-Shock  W h i t h a m  Inequali t ies 
to Class I 

In order to determine the sound wave velocities, we linearize the non- 
linear equations around one equilibrium state and we obtain the sum of 
three differential operators with associated polynomials Ps, P4, P3 (P3-= 0 
for the characteristic velocities). In order to generalize the Whitham result 
(interlacing of the P3, P4 roots), we find well-defined inequalities between 
the Ps ,  Pa roots and the P4, P3 roots. Then the main wave is provided by 
the P3 roots (weak shocks), while the disturbances provided by the higher 
polynomials Ps,  P4 will be exponentially damped. We linearize Eqs. (1.3) 
around the (i) state: Ni=no i [1  +Xi(q(i))],  M;=moi [1  + Y~(q(i))], R =  
roE1 + Yo01(i))], r / o ) = x - ( ( i ) t ;  and we define the operators d+ = n o l p + ,  
d_ = no2P_,  3+ = rnol p + ,  6_  = m o z p _ ,  (~o = root, Zl = 61moln02, 
z2 = 62molmo2. We obtain A Y(~/o)) = 0, Y being a column vector with com- 
ponents X1, )(2, Y1, I12, Yo. Defining A = det(A), we get 

d+ d_ 0 0 0 

0 2d,  d+ 0 3 + - 6 _ 

2 3  = 0 0 3 + 3_  d , 3  o (A.5) 

o - -Z l  d --t-21 Z 1 - -Z  1 

0 0 - z 2  - z 2  6o+2Z2 
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This is the sum of fifth-order (35), fourth-order (Z~4) , and third-order (33) 
differential operators such that z~k(h0/(o))=0, k =  5, 4, 3, for h an r/(i)- 
dependent function. We call Pk(~(i)) the associated k = 5, 4, 3 polynomials. 
We find for the fifth-, fourth-, and third-order terms 

3 s = d +  d_6 + 6_6o 

0 5 = rtolno2molmo2r 0 

P5 = B s ( 1  - ~ i~ )  2 ~0/ 
34=z ,6o[6_6+(d+ + d _ ) + d , d + d  (6+6_),] 

+z2d+d [26_3+ +d,6o(6+ +6_)/2] 

P4 ~-~ ( 1  - -  r 
P2 = zl P21 + z2P22 = A2 ~i) "-]- A 1 ~(i) -I- A 0 

P21 = { (ijro[molmo2(nox( 1 - ((i)) - no2(1 + ~(i/)) 

+ d,  nolnoa(mm(1 - {(i)) - mo2(1 + ~(i)))] 

P22 = nm no2[-2( 1 - ~i))mol mo2 

+ 0.5d, ro~i(mm(1 - {(i)) - mo~(1 + {(i))] (A.6) 

A3/Z1Z2 

P3/z1 Z2 

2d, d+d_(6+ +6_  + d ,  6o) 

+ (d+ + d_ )[26 + 6 _ + d ,  6o(6 + + 6 _ )/2,] 

2d, nmno2(1 - r [mol - too2 - ((i)(mm + too2 + d ,  ro)] 

-k- [-rtOl(1 - -  ((i)) -- rt02(l + (( i))]  

x {2mm moa(1 -- (~i)) + d,((i)ro[mm( 1 - ((i)) - too2( 1 + (0))]/2 } 
(A.7) 

A4.1. Whi tham Conditions for the Pz, P4 Roots 

L e m m a  A 1 .  (i) The two roots ~-+ of P2 are real and belong to 
] -  1, 0[  and ]0, 1 [. (ii) The three roots ~0), j = 1, 2, 3, of P3 are real and 
belong to ] - 1 ,  1[. (iii) For P3(0) > 0, ~+ ~ ]~(0 2), ~+[, while ~- ~ ]0, ~o[ ;  
and for P3(0) < 0, ~+ ~ ]0, ~+[, while ~-  ~ ]~(o a), ~L[. 

with roots - 1 ,  1 (multiplicity 2), and 0 for Ps, and - 1 ,  1, and the two 
P2 roots for P4. We call ~+- the P : = 0  roots; ~o~, j =  1, 2, 3, the P 3 = 0  
roots; ~o j), j =  t, 2, the P21 roots (P2 =0 ,  Za=0);  and ~ the P22 roots 
(P2=0 ,  z2= oo). The ~(J) roots are nm independent and for the (i) state 
noi=moi = rl they are (0,_+(5/6)1/2), (0, _+(13/15) 1/2) for d =  2, 3. 
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We recall that a > 0, rtoi > 0, mo~ > 0, r o > 0, ro 2 = mo~mo:, 
mol no: = amo2 rtol, zi > O. 

(i) From (A.6) we get P2(_+l)<0,  A o = P 2 ( 0 ) > 0 ,  A z < 0 ~  - 1 <  
( - < 0 < ~ + < 1 .  

(ii) We find ~(o 1) = 0, ~(o 2) = c_/c+, c+ := d, no~(ano~ + no2) + 
mol(n m + no2 ), and 

~(o2)P3(~ = 0) > 0, ~or(2)P~3t~tr _- ~or(2)~) < 0 

p~(+~)<>o, I~r < ~ (A.8) 

The P3 r o o t s e ] - l ,  + l [  if we find - - l < X l < X 2 < l  with P 3 ( x t ) > 0 ,  
P3(x2)<0. In the two cases P3(0)~0  we get (xl ,x2)=(0,~(o 2)) and 
(~(o 2), o). 

(iii) We define c := (anol - no2)/(anol + no2), fc[ < l, a := 
d.  ro(mol + mo2)/4mm mo2 > 0, and write down some P2~(~), i = l, 2, proper- 
ties: P22(0) > 0, P2i( ~ 1) < 0, and 

~(~(o 2) - ~) P21(~) > 0, p22(~)[1 _ ~2 + ~ ( c -  ~)~] > 0 

- 1  < ~ L  < 0 < ~  + < 1 (h.9) 

We seek whether or not the ~-+ roots of P2 belong to the positive or 
negative intervals limited by the corresponding P2~, P22 roots. We consider 
P3(0) <> 0 and, for simplicity, present the results for P3(0)> 0 with positive 
and negative ~ values for P2i(~), P2(~): 

P~(O) > o - ,  ~(o 2) > o 

ff > sup(((o 2), (~+)--* P21 <0,  P22 < 0, P 2 < 0  

0 < ~ <inf(~(o 2), ~ + ) ~  P21 >0,  P22 > 0, P 2 > 0  

- l < ~ < ~ P z l < 0 ,  P22<0, P 2 < 0  

Lemma A2. 

- 1  < ~(1)< ~- <~(2)< ~+ < ~(3)< 1 

In addition to (A.8), (A.9), and Lemma A1, we add 

P 3 ( U ) ~ o  for ~ < > o  

Due to the P3(~) changes of signs for ~ = - l, ~-,  ~+, l, it follows that 
(A.10) is satisfied. 

The P3, P4 roots satisfy the Whitham inequalities 

(A.10) 
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A4.2. Application of the Whitharn Method to Higher Waves 

We rewrite (A.5): 

2 3 =  2 2 2 B4(~ 22 2 BsG(a,2- axe) + + +~ -ax~)(a, ~+G)(a, -G) 
3 

q- B3 H (at q- ~<J)ax) 
j= t  

with B5 > 0, B 4 = - A 2 >  0, and B3/zlz2, equal to 

d.(mol + mo2)[2nolno2 + 0.5ro(nol + no2)] 

+ 2d2.ronoxno2 + 2motmoz(nol + no2) > 0 

We follow the Whitham principle that in a wave motion with speed 
the derivatives at and - ~ a  x of any quantity are approximately equal. The 
main waves are provided by the third-order operator (weak shock motion). 
The disturbances produced by the fifth- and fourth-order operators must 
be, for large time, exponentially damped by the presence of the main waves. 
For the wave motions with velocities ~ -+ of the fourth-order operator this 
is explained by Whitham. <8) Here we neglect the fifth-order operator, and 
a damping (e "t, # < 0) occurs provided B3 B4 is positive and the inequalities 
(A.10) are satisfied. For instance, for a wave motion with velocity ~+ we 
find 

# = B 3 [ H ( ~ ( J ) - - ~ + ) ] / B 4 ( ~ + - - ~ - ) [ ( ~ + ) 2 - - 1 ]  <0 

Let us now study the damping of the wave motions f ( x  T-t) asso- 
ciated to the fifth-order (multiplicity 2) and fourth-order (multiplicity 1) 
operators. As in Whitham, (8) with the same approximations, in such a 
wave motion at ~ -T-ax and a third-order 0 3 x3 differential operator (or -T-a~3) 
is factorized: [d2(at+_ax)2+dl(at+ax)+do]at33 with d2=4B5>0 ,  d l =  

- 2P2( ~ 1) > 0, d o = T z 1 z2 P3( T 1) > 0. Seeking a damping factor when 
the time is large, 

[d2(at + ax) 2 + dx(0t + 3x) + do] f ( x  -T- t) C(t) = 0 

the solutions associated to f ( x - ( - 1 )  i t) are C =  e "t, where # < 0 satisfy 
d2# 2 + dl#  + do = 0, or 

21~2nojmoj+#[2zx(moy+d, noj)+zad, noj]+d, ZlZ2=O, j = l ,  2 (A.11) 

with positive diseriminants: 

[nojz2d, + 2zl(d, noj-rnofl]2 +16z~rnosnofl,> O, j = l ,  2 
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Lemma A3. The wave solutions f ( x  T- t) corresponding to the fifth- 
and fourth-order terms are exponentially damped at large times, with the 
decay coefficients/z < 0 given by (A.11). 

A5. Euler W e a k - S h o c k  Relations 

J[n the Euler formal ism we can also obtain the characteristic velocities 
as roots of a cubic polynomial. First we take into account in (3.7) and (3.8) 
the vanishing of two collision terms ao~ + bo~ = 0. Second we assume that 
n~e, ma~, rx are small, their products being negligible, or aos ~ 0. Third, from 
the linear conservation laws, n~2, mx2, r~ are linear functions of n~,  m~ 
and the relations become 

mll a(i) = nli b(i) 

ml~ c(i) = rt~l d(i) 

a0~ = too2((1 + ~) - mo~ ~(1 - () - 4ro(1 - (2)/d, 

b~i) = (1 - ()[2mol ( d ,  + 4ro(1 + ( ) ]  

co~ = no~ [ 1 -- ( + too2 (1 + ()/mo~ ] 

do~ = too2(1 + ~) - (1 - ~) n0~(2d, + mo2/no2) 

The compatibility condition a~)d(~)- c(t)d~i)= 0 leads to the roots (A.7). 

A6. I n f i n i t e - M a c h - N u m b e r  Shock 

In the (ii) state, we assume that sl  = s z ~ p l  = roo=0 With only P2 ~0.  
First we show that the (i) and (ii) states are positive if 
1 > ( >  1/[I  + (d , /2)2 /a]  ~/2 > 0. From Section 3, 

y --- (1 - r  + ~) = ,~o2 > 0 

,~o~ = ~ .  = a , / {  - 1 + ; d , / 2  [a(1 - ~ )  3 v~ } > o 

rhoz = nozmox/a = rh12 = - Y (ml l  + 2d. )  > 0 

ro = fftox(fio2/a) ~/2 = rl = z(r/vt 11 + d , )  > 0 

Second, for the determination of the ~ii) at the (ii) state, we perform 
a limiting procedure in P 3 - - 0  (with n~, tool, ro replaced by s~, pz, too). 
Let s ; ~ 0 ,  p l y 0 ,  r o o ~ 0  with pz=CSt. From a p 2 s l = s z p a  it follows 
that s~/s2 --* O, s j / x / ~  ~ 0 and 2 P 3 / z l z e d ,  s2p2roo ~_ ~(ii)(1 + ff(ii}) 2 and the 
two possible characteristic ~(~ are 0, - 1 .  The Lax condition gives 
((ii) = O ~" ( < ((i)" Furthermore, P; > P ,  = 0, M, - Me, = 2~'(d, nol + too1 )/ 
(1 + ~ ) + d ,  roo > 0  and the shocks are compressive with the (ii) upstream 
state at + ~ .  
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APPENDIX B. NON-RICCATIAN SOLUTIONS DEPENDING ON 
no1 AND ARBITRARY rhol, no2 

F o r  the non-Ricca t ian  (1.2b) we have new parameters :  fi2i, rh2i, f2, 
6i, 6i. Due  to the existence of one linear relat ion with two densities, we find 
two classes of solutions which depend on the paramete rs  (3.9), except ~, 
which is fixed by a compat ibi l i ty  condition. 

B1. Six New Relations Coming from the Nonlinear Equations 

We substi tute the non-Ricca t ian  ansatz  into (3.10), mult iply by D 2 and 
define two w polynomia ls  A i at  the lhs and Bi at the rhs: 

Bi :~- a l i +  bli  -t- (~1 aoi q- w(r ali  -t- (~2aoi q- b2i ) q- w2ali(~2 

- 7 ( 1  + ~)(n22 - -  n1261 - 2wn1262  - n22w232)/51 = A1 

- 7~(r2 - r161 - 2wr162 - rzW262)/ff2 = A2 

a(n~l m22 + mk2n21) - nk2rn21 - mkln22  = a l l  for k = 0, and  =:  bll  for k = 1 

621 : =  aF/21/Y/22 - -  n22m21 

m k l m z 2  + m k z m 2 1 -  2rkr2 = a12 f o r  k = 0, and = b12 fo r  k = 1 

b22 : =  m z l m 2 2  - r~ 

Since the coefficients of w ~ w 1, w 2 are the same on the lhs and rhs, we 
obta in  f rom w2: 

f f z / f l = ~ a t l r 2 / [ ( l  + ~ ) a l z n 2 2 ] ,  ] ) / ~ l = a l l / ( l  + ~ ) n z 2  (B.1) 

and four other  relations. We define scaled variables with the scaling 
pa ramete r s  nkl,  k = 0 ,  1, 2: 

6i-~" (n21/nH) i (~i' i= 1, 2 

all  -~- nol n21{lli 

bl i  -~- nll/ , /21/~li  

b2i "= rt~l b2i 

a(rh22 + rhk2) -- ~k2rh21 -- yrhkl =:  dll  for k --- O, and = :/;11 for k = 1 

/)21 = am22 - Yrh21 =/~H -/~01 rh21 rhk2 + rh22rhkl 

- -2 fkf2  =:  a~2 for k - O ,  and = /~2  for k =  1 

/~22 = r~21 rh22 - ~ 
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Recalling that n,1 = - n o l  aoi/{)oi is not arbitrary, we write the four relations 

~1 = ( 2a l ,  bol - ao,/51, )/t~O1 (611 - -  aol ) 

= F2(2a12/~o2 - -  a o 2 / 5 1 2 ) / / 5 o 2 ( r 1 6 1 2  - -  a02/72) (B.2)  

32 = (611 31 - - / 5 2 1  a o l / / 5 o 1 ) / ( 2 6 1 1  - aOl) 

= Y2(a, a12 - /522  602//5o2)/(2?1612 - r2ao2) (B.3)  

For the four equations (B.2)-(B.3) we have three unknown parameters 
al,  32, rn2, to be determined, and consequently ( will be fixed by a com- 
patibility condition. 

Lemma B1. ( 3 , - 3 2 - 1 ) ( 2 6 H - a m ) = 0 .  

From tile first of relations (B.2)-(B.3) and /521 +bo12/511, coming 
from the Ni linear relation, the result is trivial. We call SoI.A and Sol.B the 
solutions 261, = aol and 3~ = 32 + 1. 

L e m m a  B2. 3, =2+ao1(1  +ay)/bol(ay+~o2) (also 32 for Sol.B) is 
a known function of the arbitrary parameters rhOl, no2, ( of (3.9). We define 
3m ~ ff/21 --/57/11 " 

In the first relation of (B.2) for 3,, both numerator and denominator 
factorize 3m : 

aOl  - -  a l l  ~--" 3m(ay + t/o2) 

2611/5Ol - aol/511 = 3m[ay(aol -/5o*) + y(aol - a/)ol) - 2/)o1 no23 

I . e mma  B3. n~2, is a known function of the arbitrary parameters 
tho,, rio2, ~, rh2, = # q ,  + 6Ol/2(ay +~o2) for Sol.A and for Sol.B: 

/77/21 -}- d ,  = S,/5o2 d ,  (fflo2 + yfflOl)/l-2/5o2(ffto2 - y thol  - -  2~oZ) 

+ ao2(-rh12 + yrhl, + 2z~,)] 

In Sol.A we use 611- 6o, = -6Ol/2. For Sol.B, in the last relation of (B.3) 
both numerator and denominator factorize 3m: 

r ,  a12 --  rz a02 = 3mzd,(ffl02 + yfftOl ) 

612 - ao2 = 3m(r~o2 -- yrho, -- 2?oZ) 

/512 --  2/502 = 3m(f f /12  - -  Yff/ll -- 2z~1) 

2612/5o2 --  ao2/512 ----- 2/5o2(612 -- 602) + 602(2/502 - - / 5 1 2 )  

172 = / 5 0 2 3 1 ( / 7 1 6 1 2  - -  aoj2)/(2612/5o2 - ao2/5~2) = z(rh2~ + d , )  
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L e m m a  B4. From a compatibility condition we find ( as a function 
of thol,/~02- 

From Lemmas B9 and B10, with th21 known as a function of ~, r~oi, 
no2 we deduce r2, m22 , ali ,  bli,  [~2i, i =  1, 2, while J1 is known. For Sol.A 
the two last relations of (B.2)-(B.3) give both •2 and a compatibility condi- 
tion for ~. For Sol.B the first relation of (B.3) fixes r 
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